如圖,雙曲線與拋物線交于點P,P點的縱坐標為-1,則關于x的方程的解是     

試題分析:∵P的縱坐標為-1,∴,∴,∵可化為關于x的方程的形式,∴此方程的解即為兩函數(shù)圖象交點的橫坐標的值,∴.故答案為:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點,與y軸交于點C(0,3),設拋物線的頂點為D.

(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線y1=2x2向右平移2個單位,得到拋物線y2的圖象. P是拋物線y2對稱軸上的一個動點,直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t=       

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=3x和y=2x分別與直線x=2相交于點A、B,將拋物線y=x2沿線段OB移動,使其頂點始終在線段OB上,拋物線與直線x=2相交于點C,設△AOC的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,如果拋物線分別向上、向右平移2個單位,那么新拋物線的解析式是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若將拋物線y=3x2+1向下平移1個單位后,則所得新拋物線的解析式是        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù),下列自變量取值范圍中y隨x增大而增大的是(    ).
A.x<2B.x<-1C.D.x>-1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)圖像如圖所示,下列結論:①,②,③,④方程的解是-2和4,⑤不等式的解集是,其中正確的結論有(   )
A.2個B.3個 C.4個D.5個

查看答案和解析>>

同步練習冊答案