【題目】如圖1,在平面直角坐標(biāo)系中,直線AB軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC交于點(diǎn)C

1)若直線AB解析式為,

求點(diǎn)C的坐標(biāo);

△OAC的面積.

2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA4P、Q分別為線段OAOE上的動點(diǎn),連結(jié)AQPQ,試探索AQPQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.

【答案】1①C4,4);②12;(2)存在,3

【解析】

試題(1聯(lián)立兩個函數(shù)式,求解即可得出交點(diǎn)坐標(biāo),即為點(diǎn)C的坐標(biāo);

欲求△OAC的面積,結(jié)合圖形,可知,只要得出點(diǎn)A和點(diǎn)C的坐標(biāo)即可,點(diǎn)C的坐標(biāo)已知,利用函數(shù)關(guān)系式即可求得點(diǎn)A的坐標(biāo),代入面積公式即可;

2)在OC上取點(diǎn)M,使OM=OP,連接MQ,易證△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得AQ、M三點(diǎn)共線,又AB⊥OP,可得∠AEO=∠CEO,即證△AEO≌△CEOASA),又OC=OA=4,利用△OAC的面積為6,即可得出AM=3,AQ+PQ存在最小值,最小值為3

1由題意,

解得所以C4,4);

代入得,,所以A點(diǎn)坐標(biāo)為(6,0),

所以;

2)由題意,在OC上截取OMOP,連結(jié)MQ

∵OQ平分∠AOC,

∴∠AOQ=∠COQ,

OQ=OQ,

∴△POQ≌△MOQSAS),

∴PQ=MQ,

∴AQ+PQ=AQ+MQ,

當(dāng)AQ、M在同一直線上,且AM⊥OC時,AQ+MQ最。

AQ+PQ存在最小值.

∵AB⊥ON,所以∠AEO=∠CEO,

∴△AEO≌△CEOASA),

∴OC=OA=4,

∵△OAC的面積為12,所以AM=12÷4=3,

∴AQ+PQ存在最小值,最小值為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD內(nèi)有一點(diǎn)F,F(xiàn)BFC分別平分∠ABC和∠BCD,點(diǎn)E為矩形ABCD外一點(diǎn),連接BE,CE.現(xiàn)添加下列條件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四邊形BECF是正方形的共有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,點(diǎn)的中點(diǎn),如果點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動,同時,點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動.

1)若點(diǎn)與點(diǎn)的運(yùn)動速度相等,經(jīng)過1秒后,是否全等?請說明理由;

2)若點(diǎn)與點(diǎn)的運(yùn)動速度不相等,當(dāng)點(diǎn)的運(yùn)動速度為多少時,能使全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出kx+b-<0時x的取值范圍;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,∠B=90°,AD=AB=4BC=7,點(diǎn)EBC上,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.

1)求線段DC的長度;

2)求FED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,ABOC,∠AOC=90°,∠BCO=45°,BC=12,點(diǎn)C的坐標(biāo)為(-18,0)

1)求點(diǎn)B的坐標(biāo);

2)若直線DE交梯形對角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,∠OFE=45°,求直線DE的解析式;

3)求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O的半徑為1,等腰直角三角形ABC的頂點(diǎn)B的坐標(biāo)為(,0),CAB=90°, AC=AB,頂點(diǎn)A在O上運(yùn)動.

(1)設(shè)點(diǎn)A的橫坐標(biāo)為x,ABC的面積為S,求Sx之間的函數(shù)關(guān)系式,并求出S的最大值與最小值;(2)當(dāng)直線ABO相切時,求AB所在直線對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四組線段中,可以組成直角三角形的是( 。

A. 4,5,6 B. 3,4,5 C. 5,6,7 D. 1,,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、Cx軸上,點(diǎn)D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對稱軸交于M,點(diǎn)P為線段FG上一個動點(diǎn)(與F、G不重合),PQy軸與拋物線交于點(diǎn)Q.

(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;

(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時,以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時點(diǎn)P的坐標(biāo);

(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案