【題目】已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(0,6),點(diǎn)B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過(guò)拋物線y=x2+bx+c的頂點(diǎn)P,且l1與l2相交于點(diǎn)C,直線l2與x軸、y軸分別交于點(diǎn)D、E.若把拋物線上下平移,使拋物線的頂點(diǎn)在直線l2上(此時(shí)拋物線的頂點(diǎn)記為M),再把拋物線左右平移,使拋物線的頂點(diǎn)在直線l1上(此時(shí)拋物線的頂點(diǎn)記為N).

(1)求拋物y=x2+bx+c線的解析式.

(2)判斷以點(diǎn)N為圓心,半徑長(zhǎng)為4的圓與直線l2的位置關(guān)系,并說(shuō)明理由.

(3)設(shè)點(diǎn)F、H在直線l1上(點(diǎn)H在點(diǎn)F的下方),當(dāng)△MHF與△OAB相似時(shí),求點(diǎn)F、H的坐標(biāo)(直接寫(xiě)出結(jié)果).

【答案】(1);(2)以點(diǎn)為圓心,半徑長(zhǎng)為4的圓與直線相離;理由見(jiàn)解析;(3)點(diǎn)的坐標(biāo)分別為、、.

【解析】

1)分別把A,B點(diǎn)坐標(biāo)帶入函數(shù)解析式可求得b,c即可得到二次函數(shù)解析式

2)先求出頂點(diǎn)的坐標(biāo),得到直線解析式,再分別求得MN的坐標(biāo),再求出NC比較其與4的大小可得圓與直線的位置關(guān)系.

3)由題得出tanBAO=,分情況討論求得F,H坐標(biāo).

(1)把點(diǎn)、代入,

解得,,

∴拋物線的解析式為.

(2)由,∴頂點(diǎn)的坐標(biāo)為,

代入解得,∴直線解析式為,

設(shè)點(diǎn),代入,∴得

設(shè)點(diǎn),代入,∴得

由于直線軸、軸分別交于點(diǎn)

∴易得、,

,

,∵點(diǎn)在直線上,

,

,,

,

∴以點(diǎn)為圓心,半徑長(zhǎng)為4的圓與直線相離.

(3)點(diǎn)、的坐標(biāo)分別為、、、.

C(-1,-1),A(0,6),B(1,3)

可得tanBAO=,

情況1tanCF1M= = , CF1=9,

M F1=6,H1F1=5, F1(8,8),H1(3,3);

情況2F2(-5,-5), H2(-10,-10)(與情況1關(guān)于L2對(duì)稱(chēng));

情況3F3(8,8), H3(-10,-10)(此時(shí)F3F1重合,H3H2重合).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)EBE的垂線交AB于點(diǎn)F,⊙OBEF的外接圓.

1)求證:AC是⊙O的切線;

2)過(guò)點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1,EF=,求AF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)Ax軸的正半軸上,直線yx1交邊ABOA于點(diǎn)D、M,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N

1)求BN的長(zhǎng).

2)點(diǎn)P是直線DM上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)D、點(diǎn)M重合),連接PBPC、MN,當(dāng)△BCP的面積等于四邊形ABNM的面積時(shí),求點(diǎn)P的坐標(biāo).

3)在(2)的條件下,連接CP,以CP為邊作矩形CPEF,使矩形的對(duì)角線的交點(diǎn)G落在直線DM上,請(qǐng)寫(xiě)出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與、軸交于、、三點(diǎn),其中,拋物線的頂點(diǎn)為

1)求的值及頂點(diǎn)的坐標(biāo);

2)如圖1,若動(dòng)點(diǎn)在第一象限內(nèi)的拋物線上,動(dòng)點(diǎn)在對(duì)稱(chēng)軸上,當(dāng),且時(shí),求此時(shí)點(diǎn)的坐標(biāo);

3)如圖2,若點(diǎn)是二次函數(shù)圖像上對(duì)稱(chēng)軸右側(cè)一點(diǎn),設(shè)點(diǎn)到直線的距離為,到拋物線的對(duì)稱(chēng)軸的距離為,當(dāng)時(shí),請(qǐng)求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)按定價(jià)銷(xiāo)售某種商品時(shí),每件可獲利100元;按定價(jià)的八折銷(xiāo)售該商品5件與將定價(jià)降低50元銷(xiāo)售該商品6件所獲利潤(rùn)相等.

(1)該商品進(jìn)價(jià)、定價(jià)分別是多少?

(2)該商場(chǎng)用10000元的總金額購(gòu)進(jìn)該商品,并在五一節(jié)期間以定價(jià)的七折優(yōu)惠全部售出,在每售出一件該商品時(shí),均捐獻(xiàn)元給社會(huì)福利事業(yè),該商場(chǎng)為能獲得不低于3000元的利潤(rùn),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我為武漢加油征文活動(dòng)中,學(xué)校計(jì)劃對(duì)獲得一、二等獎(jiǎng)的學(xué)生分別獎(jiǎng)勵(lì)一臺(tái)計(jì)算器,一個(gè)考試包.已知購(gòu)買(mǎi)臺(tái)計(jì)算器和個(gè)考試包共元,購(gòu)買(mǎi)臺(tái)計(jì)算器和個(gè)考試包共元.

1)計(jì)算器、考試包的單價(jià)分別為多少元?

2)經(jīng)與商家協(xié)商,購(gòu)買(mǎi)計(jì)算器超過(guò)臺(tái)時(shí),每增加一臺(tái),單價(jià)降低元;超過(guò)臺(tái),均按購(gòu)買(mǎi)臺(tái)的單價(jià)銷(xiāo)售,考試包一律按原價(jià)銷(xiāo)售,學(xué)校計(jì)劃獎(jiǎng)勵(lì)一、等獎(jiǎng)學(xué)生共計(jì)人,其中一等獎(jiǎng)的人數(shù)不少于人,且不超過(guò)人,這次獎(jiǎng)勵(lì)一等獎(jiǎng)學(xué)生多少人時(shí),購(gòu)買(mǎi)獎(jiǎng)品金額最少,最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)AB、C在同一條直線上,小紅在D處觀測(cè)旗桿頂部A的仰角為47°,觀測(cè)旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果精確到0.1m).參考數(shù)據(jù):sin47°≈0.73cos47°≈0.68,tan47°≈1.07,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,過(guò)點(diǎn)BBDAC于點(diǎn)DBE平分∠ABDAC于點(diǎn)E

1)求證:CBCE;

2)若∠CEB80°,求∠DBC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2=的圖象交于A、B兩點(diǎn),已知當(dāng)x1時(shí),y1y2;當(dāng)0x1時(shí),y1y2

1)求一次函數(shù)的函數(shù)表達(dá)式;

2)已知反比例函數(shù)在第一象限的圖象上有一點(diǎn)Cx軸的距離為2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案