【題目】如圖,某城市市民廣場一入口處有五級高度相等的小臺階.已知臺階總高1.5米,為了安全,現(xiàn)要做一個不銹鋼扶手AB及兩根與FG垂直且長為1米的不銹鋼架桿AD和BC(桿子的底端分別為D、C),且∠DAB=66.5°.(參考數(shù)據(jù):cos66.5°≈0.40,sin66.5°≈0.92)
(1)求點D與點C的高度差DH;
(2)求所有不銹鋼材料的總長度(即AD+AB+BC的長,結果精確到0.1米)

【答案】
(1)解:DH=1.5米× =1.2米
(2)解:過B作BM⊥AD于M,

在矩形BCHM中,MH=BC=1米,

AM=AD+DH﹣MH=1米+1.2米﹣1米=1.2米,

在Rt△AMB中,AB= ≈3.00米,

所以不銹鋼材料的總長度為1米+3.00米+1米=5.0米


【解析】(1)根據(jù)圖形求出即可;(2)過B作BM⊥AD于M,先求出AM,再解直角三角形求出即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO,已知BD=

(1)求正方形ABCD的邊長;

(2)求OE的長;

(3)①求證:CNAF;

②直接寫出四邊形AFBO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y= 的圖象交于P、G兩點,過點P作PA⊥x軸,一次函數(shù)圖象分別交x軸、y軸于C、D兩點, = ,且SADP=6.
(1)求點D坐標;
(2)求一次函數(shù)和反比例函數(shù)的表達式;
(3)根據(jù)圖象直接寫出一次函數(shù)值小于反比例函數(shù)值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ADBC,EAB邊上一點,BCE=15°,EFADDC于點F.

(1)依題意補全圖形,求∠FEC的度數(shù);

(2)若∠A=140°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位運動員在一段2000米長的筆直公路上進行跑步比賽,比賽開始時甲在起點,乙在甲的前面200米,他們同時同向出發(fā)勻速前進,甲的速度是8米/秒,乙的速度是6米/秒,先到終點者在終點原地等待.設甲、乙兩人之間的距離是y米,比賽時間是x秒,當兩人都到達終點計時結束,整個過程中y與之間的函數(shù)圖象是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A在數(shù)軸上對應的數(shù)為2,若點B也在數(shù)軸上,且線段AB的長為4,CAB的中點則點C在數(shù)軸上對應的數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為121,用兩個相同的管子在容器的5 cm高度處連通(即管子底離容器底5 cm),現(xiàn)三個容器中,只有甲中有水,水位高1 cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水開始注水1分鐘,乙的水位上升cm.

(1)開始注水1分鐘,丙的水位上升________cm;

(2)開始注入________分鐘的水量后,乙的水位比甲高0.5 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點A,B(點A在點B的右側(cè)),與y軸相交于點C(0,﹣3).

(1)求拋物線的函數(shù)表達式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司以每噸元的價格收購了噸某種藥材,若直接在市場上銷售,每噸的售價是元.該公司決定加工后再出售,相關信息如下表所示:

工藝

每天可加工藥材的噸數(shù)

成品率

成品售價

(元/

粗加工

14

80%

6000

精加工

6

60%

11000

(:①成品率80%指加工100噸原料能得到80噸可銷售藥材;②加工后的廢品不產(chǎn)生效益.)

受市場影響,該公司必須在天內(nèi)將這批藥材加工完畢.

(1)若全部粗加工,可獲利_______________________

(2)若盡可能多的精加工,剩余的直接在市場上銷售,可獲利_____________

(3)若部分粗加工,部分精加工,恰好天完成,求可獲利多少元?

查看答案和解析>>

同步練習冊答案