【題目】已知:如圖,D是△ABC的邊BC上的一點(diǎn),且CD=AB,∠BDA=∠BAD,AE是△ABD的中線.

⑴若∠B=60°,求∠C的值;

⑵求證:AD是∠EAC的平分線.

【答案】(1)∠C=30°;(2)詳見解析.

【解析】

(1)根據(jù)已知條件得到∠BAD=BDA=60°,于是得到AB=AD,等量代換得到CD=AD,根據(jù)等腰三角形的性質(zhì)得到∠DAC=C,推出∠BDA=DAC+C=2C,即可得到結(jié)論;

(2)證明:延長(zhǎng)AEM,使EM=AE,連接DM,推出ABE≌△MDE,根據(jù)全等三角形的性質(zhì)得到∠B=MDE,AB=DM,根據(jù)全等三角形的判定定理得到MAD≌△CAD,根據(jù)全等三角形的性質(zhì)得到∠MAD=CAD于是得到結(jié)論.

(1)∵∠B=60°,BDA=BAD,

∴∠BAD=BDA=60°,

AB=AD,

CD=AB,

CD=AD,

∴∠DAC=C,

∴∠BDA=DAC+C=2C,

∵∠BAD=60°,

∴∠C=30°;

(2)證明:延長(zhǎng)AEM,使EM=AE,連接DM,

ABEMDE中,

∴△ABE≌△MDE,

∴∠B=MDE,AB=DM,

∵∠ADC=B+BAD=MDE+BDA=ADM,

MADCAD,

,

∴△MAD≌△CAD,

∴∠MAD=CAD,

AD是∠EAC的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)P,Q分別在BC,AC上,AQ=PQ,PR=PS,PR⊥AB于點(diǎn)R,PS⊥AC于點(diǎn)S,則下面結(jié)論錯(cuò)誤的是( )

A. ∠BAP=∠CAP B. AS=AR

C. QP∥AB D. △BPR≌△QPS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A,B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P為拋物線上,且位于x軸下方.
(1)如圖1,若P(1,﹣3),B(4,0).

①求該拋物線的解析式;
②若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);
(2)如圖2,已知直線PA,PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí), 是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F,若AB=4,BC=6,則FD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)你用學(xué)習(xí)一次函數(shù)時(shí)積累的經(jīng)驗(yàn)和方法研究函數(shù)y=|x|的圖象和性質(zhì),并解決問題.

(1)完成下列步驟,畫出函數(shù)y=|x|的圖象;

①列表、填空;

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

1

1

2

3

②描點(diǎn);

③連線.

(2)觀察圖象,當(dāng)x   時(shí),yx的增大而增大;

(3)根據(jù)圖象,不等式|x|<x+的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)先解不等式組 ,然后判斷 是不是此不等式組的一個(gè)整數(shù)解.
(2)化簡(jiǎn)求值:先化簡(jiǎn) ,再從1,2,3中選取一個(gè)適當(dāng)?shù)臄?shù)代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),是直角,OE平分

,則______;若,則______;

,則______用含的式子表示,請(qǐng)說明理由;

的內(nèi)部有一條射線OF,滿足,試確定的度數(shù)之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技與經(jīng)濟(jì)的發(fā)展,機(jī)器人自動(dòng)化線的市場(chǎng)越來越大,并且逐漸成為自動(dòng)化生產(chǎn)線的主要方式某化工廠要在規(guī)定時(shí)間內(nèi)搬運(yùn)1800千克化工原料,現(xiàn)有A,B兩種機(jī)器人可供選擇,已知A型機(jī)器人每小時(shí)完成的工作量是B型機(jī)器人的1.5倍,A型機(jī)器人單獨(dú)完成所需的時(shí)間比B型機(jī)器人少10小時(shí).

1)求兩種機(jī)器人每小時(shí)分別搬運(yùn)多少千克化工原料?

2)若A型機(jī)器人工作1小時(shí)所需的費(fèi)用為80元,B型機(jī)器人工作1小時(shí)所需的費(fèi)用為60元,若該工廠在兩種機(jī)器人中選擇其中的一種機(jī)器人單獨(dú)完成搬運(yùn)任務(wù),則選擇哪種機(jī)器人所需費(fèi)用較?請(qǐng)計(jì)算說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案