【題目】如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F分別在BC,CD邊上,高AG與正方形的邊長相等,

(1)求∠EAF的度數(shù);

(2)在圖①中,連結(jié)BD分別交AE、AF于點(diǎn)M、N,將△ADN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ABH位置,連結(jié)MH,得到圖②.求證:MN2MB2 ND2

(3)在圖②中,若AG=12, BM,直接寫出MN的值.

【答案】(1)45°;(2)證明見解析;(3).

【解析】(1)∵正方形ABCDAGEF,

AGAB,∠ABE=∠AGE=∠BAD=90°,AEAE

∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,……………………………………2分

同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,…………………………………4分

∴∠EAFBAD=45°;…………………………………………………………5分

(2)證明:由旋轉(zhuǎn)知,∠BAH=∠DANAH=AN,……………………………………7分

∵∠BAD=90°,∠EAF=45°,∴∠BAM+∠DAN=45°,

∴∠HAM=∠BAM+∠BAH=∠BAM+∠DAN =45°,

∴∠HAM=∠NAM,AM=AM,

∴△AHM≌△ANM,…………………………………………………………………8分

MN=MH,∵四邊形ABCD是正方形,∴∠ADB=∠ABD=45°

由旋轉(zhuǎn)知,∠ABH=∠ADB=45°,HB=ND,

∴∠HBM=∠ABH+∠ABD=90°,……………………………………………………9分

,∴;…………………………………10分

(3).…………………………………………………………………………………12分

以下解法供參考∵,∴

在(2)中,

設(shè),則

.即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南崗區(qū)某中學(xué)的王老師統(tǒng)計(jì)了本校九年一班學(xué)生參加體育達(dá)標(biāo)測試的報(bào)名情況,并把統(tǒng)計(jì)的數(shù)據(jù)繪制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)圖中提供的數(shù)據(jù)回答下列問題:

(1)該學(xué)校九年一班參加體育達(dá)標(biāo)測試的學(xué)生有多少人?

(2)補(bǔ)全條形統(tǒng)計(jì)圖的空缺部分;

(3)若該年級有1200名學(xué)生,估計(jì)該年級參加仰臥起坐達(dá)標(biāo)測試的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,按如下步驟作圖:①以點(diǎn)A為圓心,AB長為半徑畫弧;②以點(diǎn)C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)ADCD

1)填空:△ABC≌△ ;ACBD的位置關(guān)系是

2)如圖2,當(dāng)AB=BC時(shí),猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論.

3)在(2)的條件下,若AC=8cm,BD=6cm,則點(diǎn)BAD的距離是 cm,若將四邊形ABCD通過割補(bǔ),拼成一個(gè)正方形,那么這個(gè)正方形的邊長為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】25 日某路段雷達(dá)測速區(qū)監(jiān)測到一組汽車時(shí)速數(shù)據(jù),經(jīng)整理得到如下頻數(shù)表和頻數(shù)直方圖(每組含后一邊界值,不含前一邊界值).

1)請你把表中的數(shù)據(jù)填寫完整.

2)補(bǔ)全頻數(shù)直方圖.

3)若該路段限速 70(汽車時(shí)速高于 70 千米/小時(shí)即為違章),抽測到違章車輛有多少輛?統(tǒng)計(jì)表明 25 日全天通過這個(gè)路段的汽車大約有 15000 輛,請估計(jì)這天超速違章的車輛有多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計(jì)劃每天生產(chǎn)零件個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入. 下表是某周的生產(chǎn)情況(超產(chǎn)數(shù)量記為正、減產(chǎn)數(shù)量記為負(fù)):

星期

增減

(1)由表可知該廠星期四生產(chǎn)零件 個(gè),這周實(shí)際生產(chǎn)零件 個(gè).(用含的代數(shù)式表示)

(2) 產(chǎn)量最高日比最低日多生產(chǎn)零件 個(gè).

(3) 若該周廠計(jì)劃每天生產(chǎn)零件數(shù)是,每個(gè)零件應(yīng)支付工資元,且每天超計(jì)劃數(shù)的零件每個(gè)另獎(jiǎng)元,那這周實(shí)際應(yīng)支付工資多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為   度;

(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;

(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在RtABCRtADE中,ABAC,ADAE,且點(diǎn)DBC邊上滑動(dòng)(點(diǎn)D不與點(diǎn)B,C重合),連接EC,

①則線段BC,DC,EC之間滿足的等量關(guān)系式為   

②求證:BD2+CD22AD2;

2)如圖2,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9CD3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新定義:若∠α的度數(shù)是∠β的度數(shù)的n倍,則∠α叫做∠βn倍角.

1)若∠M10°21′,請直接寫出∠M3倍角的度數(shù);

2)如圖1,若∠AOB=∠BOC=∠COD,請直接寫出圖中∠AOB的所有2倍角;

3)如圖2,若∠AOC是∠AOB3倍角,∠COD是∠AOB4倍角,且∠BOD90°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.

(1)求拋物線的解析式;

(2)點(diǎn)Dy軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);

(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案