【題目】如圖所示,△ABC中,AB=AC,AD平分∠BAC,點(diǎn)G是BA延長(zhǎng)線上一點(diǎn),點(diǎn)F是AC上一點(diǎn),AG=AF,連接GF并延長(zhǎng)交BC于E.
(1)若AB=8,BC=6,求AD的長(zhǎng);
(2)求證:GE⊥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1(1,)在直線y=kx上,過(guò)點(diǎn)A1作A1B1∥y軸交直線y=x于點(diǎn)B1,以A1B1為邊在A1B1的右側(cè)作正方形A1B1C1D1,直線C1D1分別交直線y=kx和y=x于A2,B2兩點(diǎn),以A2B2為邊在A2B2的右側(cè)作等正方形A2B2C2D2…,直線C2D2分別交直線y=kx和y=x于A3,B3兩點(diǎn),以A3B3為邊在A3B3的右側(cè)作正方形A3B3C3D3,…,按此規(guī)律進(jìn)行下去,則正方形AnBnCnDn的面積為____________.(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“單詞的記憶效率”是指復(fù)習(xí)一定量的單詞,一周后能正確默寫(xiě)出的單詞個(gè)數(shù)與復(fù)習(xí)的單詞個(gè)數(shù)的比值.右圖描述了某次單詞復(fù)習(xí)中四位同學(xué)的單詞記憶效率與復(fù)習(xí)的單詞個(gè)數(shù)的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫(xiě)出的單詞個(gè)數(shù)最多的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某海監(jiān)船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng))為( 。
A. 40海里 B. 60海里 C. 20海里 D. 40海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請(qǐng)計(jì)算線段CD的長(zhǎng);
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫(xiě)出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書(shū)中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時(shí),a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問(wèn)題:已知某直角三角形的邊長(zhǎng)滿足上述勾股數(shù),其中一邊長(zhǎng)為37,且n=5,求該直角三角形另兩邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形…依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0),過(guò)(1,y1)、(2,y2).下列結(jié)論:①若y1>0時(shí),則a+b+c>0; ②若a=2b時(shí),則y1<y2;③若y1<0,y2>0,且a+b<0,則a>0.其中正確的結(jié)論個(gè)數(shù)為( 。
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(3,0),于y軸交于C.
(1)求該拋物線的解析式;
(2)若M是拋物線的對(duì)稱軸與直線BC的交點(diǎn),N是拋物線的頂點(diǎn),求MN的長(zhǎng);
(3)若點(diǎn)P是拋物線上點(diǎn),當(dāng)S△PAB=8時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com