如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點(diǎn).
(1)求過A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最��?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)拋物線解析式中有兩個(gè)待定系數(shù)a,c,根據(jù)直線AC解析式求點(diǎn)A、C坐標(biāo),代入拋物線解析式即可;
(2)分析不難發(fā)現(xiàn),△ABP的直角頂點(diǎn)只可能是P,根據(jù)已知條件可證AC2+BC2=AB2,故點(diǎn)C滿足題意,根據(jù)拋物線的對(duì)稱性,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)也符合題意;
(3)由于B,F(xiàn)是定點(diǎn),BF的長(zhǎng)一定,實(shí)際上就是求BM+FM最小,找出點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)B',連接B'F,交AC于點(diǎn)M,點(diǎn)M即為所求,由(2)可知,BC⊥AC,延長(zhǎng)BC到B',使BC=B'C,利用中位線的性質(zhì)可得B'的坐標(biāo),從而可求直線B'F的解析式,再與直線AC的解析式聯(lián)立,可求M點(diǎn)坐標(biāo).
解答:解:(1)∵直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C
∴點(diǎn)A(-1,0),C(0,-
∵點(diǎn)A,C都在拋物線上,


∴拋物線的解析式為y=x2-x-
∴頂點(diǎn)F(1,-).

(2)存在:
p1(0,-),p2(2,-).

(3)存在
理由:
解法一:
延長(zhǎng)BC到點(diǎn)B′,使B′C=BC,連接B′F交直線AC于點(diǎn)M,則點(diǎn)M就是所求的點(diǎn),
∵過點(diǎn)B′作B′H⊥AB于點(diǎn)H,
∵B點(diǎn)在拋物線y=x2-x-上,
∴B(3,0),
在Rt△BOC中,tan∠OBC=
∴∠OBC=30°,BC=2
在Rt△B′BH中,B′H=BB′=2
BH=B′H=6,∴OH=3,
∴B′(-3,-2).
設(shè)直線B′F的解析式為y=kx+b,
,
解得,
∴y=

解得,
∴M(
∴在直線AC上存在點(diǎn)M,使得△MBF的周長(zhǎng)最小,此時(shí)M().
解法二:
過點(diǎn)F作AC的垂線交y軸于點(diǎn)H,則點(diǎn)H為點(diǎn)F關(guān)于直線AC的對(duì)稱點(diǎn),連接BH交AC于點(diǎn)M,則點(diǎn)M
即為所求.
過點(diǎn)F作FG⊥y軸于點(diǎn)G,則OB∥FG,BC∥FH,
∴∠BOC=∠FGH=90°,∠BCO=∠FHG
∴∠HFG=∠CBO
同方法一可求得B(3,0)
在Rt△BOC中,tan∠OBC=
∴∠OBC=30°,可求得GH=GC=
∴GF為線段CH的垂直平分線,可證得△CFH為等邊三角形
∴AC垂直平分FH
即點(diǎn)H為點(diǎn)F關(guān)于AC對(duì)稱點(diǎn),
∴H(0,-
設(shè)直線BH的解析式為y=kx+b,由題意得,,
解得
∴y=,

解得
∴M(),
∴在直線AC上存在點(diǎn)M,使得△MBF的周長(zhǎng)最小,此時(shí)M().
點(diǎn)評(píng):考查代數(shù)幾何的綜合運(yùn)用能力,體現(xiàn)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系和不可分割的特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( �。�
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�