如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B是y軸正半軸上的動(dòng)點(diǎn),作射線AB,∠OAB的平分線與∠OBA的外角的平分線交于點(diǎn)C.
(1)當(dāng)OA=OB時(shí),∠C的度數(shù)是______.
(2)當(dāng)點(diǎn)A、B分別在x軸和y軸正半軸上移動(dòng)時(shí),∠C的大小是否變化?請(qǐng)說明理由.

解:(1)∵∠AOB=90°,OA=OB,
∴∠OAB=∠OBA=45°,
∴∠DBO=180°-45°=135°,
∵點(diǎn)C是∠OAB的平分線與∠OBA的外角的平分線的交點(diǎn),
∴∠CAB=∠OAB=22.5°,∠CBO=∠DBO=67.5°,
∴∠CAB+∠CBO+∠OAB=22.5°+67.5°+45°=135°,
∴∠C=180°-(∠CAB+∠CBO+∠OAB)=180°-135°=45°.
故答案為:45°;

(2)∠C的大小不變.
理由如下:
設(shè)∠DBC=x,∠BAC=y,
∵BC平分∠DBO,AC平分∠BAO.
∴∠CBO=∠DBC=x,∠OAC=∠BAC=y.
∵∠DBO是△AOB的外角,∠DBC是△ABC的外角,
,
∴∠C=45°.
分析:(1)先根據(jù)等腰直角三角形的性質(zhì)求出∠OAB=∠OBA=45°,再由平角的定義得出∠DBO的度數(shù),由角平分線的性質(zhì)得出∠CAB與∠CBO的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論;
(2)設(shè)∠DBC=x,∠BAC=y,再根據(jù)BC平分∠DBO,AC平分∠BAO可知∠CBO=∠DBC=x,∠OAC=∠BAC=y.
再由∠DBO是△AOB的外角,∠DBC是△ABC的外角可得出關(guān)于x、y,∠C的方程組,求出∠C的值即可.
點(diǎn)評(píng):本題考查的是三角形外角的性質(zhì),即三角形的外角等于與之不相鄰的兩個(gè)內(nèi)角的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案