【題目】下列各式從左到右的變形,是因式分解的是(
A.x2﹣9+6x=(x+3)(x﹣3)+6x
B.x2﹣8x+16=(x﹣4)2
C.(x+5)(x﹣2)=x2+3x﹣10
D.6ab=2a3b

【答案】B
【解析】解:A、右邊不是積的形式,故本選項錯誤; B、是運(yùn)用完全平方公式,x2﹣8x+16=(x﹣4)2 , 故本選項正確;
C、是多項式乘法,不是因式分解,故本選項錯誤;
D、6ab不是多項式,故本選項錯誤.
故選B.
【考點(diǎn)精析】通過靈活運(yùn)用因式分解的定義,掌握因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A(a,b)在第四象限,則點(diǎn)C(-a-1,b-2)在第________象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,拋物線y=ax2﹣2x﹣3與拋物線y=x2+mx+n關(guān)于y軸對稱,C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).

(1)求拋物線C1,C2的函數(shù)表達(dá)式;

(2)求A、B兩點(diǎn)的坐標(biāo);

(3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市一湖的湖心島有一顆百年古樹,當(dāng)?shù)厝朔Q它為“鄉(xiāng)思柳”,不乘船不易到達(dá),每年初春時節(jié),人們喜歡在“聚賢亭”觀湖賞柳.小紅和小軍很想知道“聚賢亭”與“鄉(xiāng)思柳”之間的大致距離,于是,有一天,他們倆帶著側(cè)傾器和皮尺來測量這個距離.測量方法如下:如圖,首先,小軍站在“聚賢亭”的A處,用側(cè)傾器測得“鄉(xiāng)思柳”頂端M點(diǎn)的仰角為23°,此時測得小軍的眼睛距地面的高度AB為1.7米,然后,小軍在A處蹲下,用側(cè)傾器測得“鄉(xiāng)思柳”頂端M點(diǎn)的仰角為24°,這時測得小軍的眼睛距地面的高度AC為1米.請你利用以上測得的數(shù)據(jù),計算“聚賢亭”與“鄉(xiāng)思柳”之間的距離AN的長(結(jié)果精確到1米).(參考數(shù)據(jù):sin23°0.3907,cos23°0.9205,tan23°0.4245,sin24°0.4067,cos24°0.9135,tan24°0.4452.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.

甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費(fèi)用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只貓頭鷹一年能吃300只田鼠,一只田鼠一年大約要糟蹋2千克糧食,現(xiàn)有m只貓頭鷹,一年可以減少損失糧食_____千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑作圓,分別交于點(diǎn),交的延長線于點(diǎn),過點(diǎn)于點(diǎn),連接交線段于點(diǎn).

(1)求證:是圓的切線;

(2)若的中點(diǎn),求的值;

(3)若,求圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】d是最大的負(fù)整數(shù),e是最小的正整數(shù),f的相反數(shù)等于它本身,則d+ef的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.

(1)求函數(shù)y=和y=kx+b的解析式;

(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.

查看答案和解析>>

同步練習(xí)冊答案