【題目】如圖,任意四邊形ABCD,對角線AC、BD交于O點,過各頂點分別作對角線AC、BD的平行線,四條平行線圍成一個四邊形EFGH.試想當四邊形ABCD的形狀發(fā)生改變時,四邊形EFGH的形狀會有哪些變化?完成以下題目:
(1)①當ABCD為任意四邊形時,四邊形EFGH為___________;
②當四邊形ABCD為矩形時,四邊形EFGH為___________;
③當四邊形ABCD為菱形時,四邊形EFGH為___________;
④當四邊形ABCD為正方形時,四邊形EFGH為___________;
(2)請對(1)中①③你所寫的結(jié)論進行證明
【答案】(1)①平行四邊形;②菱形;③矩形;④正方形;(2)證明見解析
【解析】
(1)①根據(jù)平行于同一條直線的兩直線平行可得EF∥BD∥GH,EH∥AC∥FG,然后根據(jù)平行四邊形的定義即可求出結(jié)論;
②根據(jù)平行四邊形的性質(zhì)可得EH=AC,EF=BD,然后根據(jù)矩形的性質(zhì)可得AC=BD,然后根據(jù)菱形的定義即可求出結(jié)論;
③根據(jù)菱形的性質(zhì)可得AC⊥BD,從而證出EF⊥EH,然后根據(jù)矩形的定義即可求出結(jié)論;
④根據(jù)平行四邊形的性質(zhì)和正方形的性質(zhì)可得:EH=AC,EF=BD,AC=BD,AC⊥BD,從而得出EH=EF,EF⊥EH,然后根據(jù)正方形的定義即可得出結(jié)論;
(2)根據(jù)平行于同一條直線的兩直線平行可得EF∥BD∥GH,EH∥AC∥FG,然后根據(jù)平行四邊形的定義即可證出①;根據(jù)菱形的性質(zhì)可得AC⊥BD,從而證出EF⊥EH,然后根據(jù)矩形的定義即可證出③.
解:(1)①由題意可知:EF∥BD,GH∥BD,EH∥AC,FG∥AC
∴EF∥BD∥GH,EH∥AC∥FG
∴四邊形EFGH、四邊形EACH和四邊形EFBD都為平行四邊形
故答案為:平行四邊形;
②由①知四邊形EFGH、四邊形EACH和四邊形EFBD都為平行四邊形
∴EH=AC,EF=BD
∵四邊形ABCD為矩形
∴AC=BD
∴EH=EF
∴四邊形EFGH為菱形
故答案為:菱形;
③∵四邊形ABCD為菱形
∴AC⊥BD
∵EF∥BD,EH∥AC,
∴EF⊥EH
∵四邊形EFGH為平行四邊形
∴四邊形EFGH為矩形
故答案為:矩形;
④由①知四邊形EFGH為平行四邊形,EF∥BD,EH∥AC,四邊形ABCD為正方形
∴EH=AC,EF=BD,AC=BD,AC⊥BD
∴EH=EF,EF⊥EH
∴四邊形EFGH為正方形
故答案為:正方形;
(2)①證明如下:
由題意可知:EF∥BD,GH∥BD,EH∥AC,FG∥AC
∴EF∥BD∥GH,EH∥AC∥FG
∴四邊形EFGH為平行四邊形;
③證明如下:
∵四邊形ABCD為菱形
∴AC⊥BD
∵EF∥BD,EH∥AC,
∴EF⊥EH
∵四邊形EFGH為平行四邊形
∴四邊形EFGH為矩形
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點B,C重合),△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,交射線AC于點G,連接BE.
(1)如圖1所示,當點D在線段BC上時,求證:四邊形BCGE是平行四邊形;
(2)如圖2所示,當點D在BC的延長線上時,(1)中的結(jié)論是否成立?并請說明理由;
(3)當點D運動到什么位置時,四邊形BCGE是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時間為x小時,y1、y2關(guān)于x的函數(shù)圖像如下圖
所示:
(1)根據(jù)圖像,直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(2)若兩車之間的距離為S千米,請寫出S關(guān)于x的函數(shù)關(guān)系式;
(3)甲、乙兩地間有A、B兩個加油站,相距200千米,若客車進入A加油站時,出租車恰好進入B加油站,求A加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點,且AB=AE.
(1)求證:AC=ED;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC,BD相交于點O,不添加任何輔助線,要使四邊形ABCD是正方形,則需要添加一個條件是 . (填一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=80°,∠2=100°,∠C=∠D.
(1)判斷AC與DF的位置關(guān)系,并說明理由;
(2)若∠C比∠A大20°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與理解:
如圖1,直線,點P在a,b之間,M,N分別為a,b上的點,P,M,N三點不在同一直線上,PM與a的央角為,PN與b的夾角為,則.
理由如下:
過P點作直線,因為,所以(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).所以,.(兩直線平行,內(nèi)錯角相等),所以,即.
計算與說明:
已知:如圖2,AB與CD交于點O.
(1).若,求證:;
(2)2.如圖3,已知,AE平分,DE平分.
①若,,請你求出的度數(shù);
②請問:圖3中,與有怎樣的數(shù)量關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的960件新產(chǎn)品需要精加工后才能投放市場。現(xiàn)有甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲廠單獨加工這批產(chǎn)品比乙工廠單獨加工完這批產(chǎn)品多用20天,而甲工廠每天加工的數(shù)量是乙工廠每天加工數(shù)量的,甲、乙兩個工廠每天各能加工多少個新產(chǎn)品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com