如圖,矩形紙片ABCD,AB=3,AD=5,折疊紙片,使點(diǎn)A落在BC邊上的E處,折痕為PQ,當(dāng)點(diǎn)E在BC邊上移動時,折痕的端點(diǎn)P、Q也隨之移動.若限定點(diǎn)P、Q分別在AB、AD邊上移動,則點(diǎn)E在BC邊上可移動的最大距離為


  1. A.
    1
  2. B.
    2
  3. C.
    4
  4. D.
    5
B
分析:根據(jù)翻折變換,當(dāng)點(diǎn)Q與點(diǎn)D重合時,點(diǎn)A′到達(dá)最左邊,當(dāng)點(diǎn)P與點(diǎn)B重合時,點(diǎn)A′到達(dá)最右邊,所以點(diǎn)A′就在這兩個點(diǎn)之間移動,分別求出這兩個位置時A′B的長度,然后兩數(shù)相減就是最大距離.
解答:解:如圖1,當(dāng)點(diǎn)D與點(diǎn)Q重合時,根據(jù)翻折對稱性可得
ED=AD=5,
在Rt△ECD中,ED2=EC2+CD2,
即52=(5-EB)2+32,
解得EB=1,
如圖2,當(dāng)點(diǎn)P與點(diǎn)B重合時,根據(jù)翻折對稱性可得EB=AB=3,
∵3-1=2,
∴點(diǎn)E在BC邊上可移動的最大距離為2.
故選B.
點(diǎn)評:本題考查的是翻折變換及勾股定理,熟知圖形翻折不變性的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊答案