【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=2,點(diǎn)D是AB的中點(diǎn),連接DO并延長(zhǎng)交⊙O于點(diǎn)P,過(guò)點(diǎn)P作PF⊥AC于點(diǎn)F.
(1)求劣弧PC的長(zhǎng);(結(jié)果保留π)
(2)求陰影部分的面積.(結(jié)果保留π).
【答案】(1)劣弧PC的長(zhǎng)為π;(2)S陰影=π﹣.
【解析】
(1)根據(jù)垂徑定理得PD⊥AB,進(jìn)而根據(jù)含30°角的直角三角形的性質(zhì)可得OF=OP,從而求得半徑為r,再利用弧長(zhǎng)公式求解即可.
(2)根據(jù)勾股定理求得PF的長(zhǎng)度,再根據(jù)三角形面積公式和扇形面積公式求解即可.
(1)∵點(diǎn)D是AB的中點(diǎn),PD經(jīng)過(guò)圓心,
∴PD⊥AB,
∵∠A=30°,
∴∠POC=∠AOD=60°,OA=2OD,
∵PF⊥AC,
∴∠OPF=30°,
∴OF=OP,
∵OA=OC,AD=BD,
∴BC=2OD,
∴OA=BC=2,
∴⊙O的半徑為2,
∴劣弧PC的長(zhǎng)===π;
(2)∵OF=OP,
∴OF=1,
∴PF==,
∴S陰影=S扇形﹣S△OPF=﹣×1×=π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,D不重合),連接EO并延長(zhǎng),交BC于點(diǎn)F,連接BE,DF.下列說(shuō)法:
① 對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;
② 當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;
③ 當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;
④ 當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.
所有正確說(shuō)法的序號(hào)是:_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為4,E、F、G、H分別是AB、BC、CD、DA上的點(diǎn),且AE=BF=CG=DH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則y與x的函數(shù)圖象可能是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(-1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,則m(am+b)>2(2a+b),其中正確的結(jié)論有______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)【問(wèn)題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;
(3)【問(wèn)題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對(duì)稱軸是直線x=0
D. 拋物線在對(duì)稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中拋物線經(jīng)過(guò)原點(diǎn),且與直線交于則、兩點(diǎn).
(1)求直線和拋物線的解析式;
(2)點(diǎn)在拋物線上,解決下列問(wèn)題:
①在直線下方的拋物線上求點(diǎn),使得的面積等于20;
②連接,作軸于點(diǎn),若和相似,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.點(diǎn)D是AB邊上一點(diǎn),過(guò)點(diǎn)D作DE // BC,交邊AC于E.過(guò)點(diǎn)C作CF // AB,交DE的延長(zhǎng)線于點(diǎn)F.
(1)如果,求線段EF的長(zhǎng);
(2)求∠CFE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接國(guó)慶節(jié),某工廠生產(chǎn)一種火爆的紀(jì)念商品,每件商品成本25元,工廠將該商品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.
(1)求與的函數(shù)解析式(也稱關(guān)系式).
(2)若一次性批發(fā)量超過(guò)20且不超過(guò)50件時(shí),求獲得的利潤(rùn)與的函數(shù)關(guān)系式,同時(shí)求當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com