【題目】操作探究:小聰在一張長(zhǎng)條形的紙面上畫了一條數(shù)軸(如圖所示),

操作一:(1)折疊紙面,使1表示的點(diǎn)與1的點(diǎn)重合,則3的點(diǎn)與_ __表示的點(diǎn)重合;

操作二:(2)折疊紙面,使2表示的點(diǎn)與6表示的點(diǎn)重合,請(qǐng)你回答以下問題:

5表示的點(diǎn)與數(shù)___表示的點(diǎn)重合;

若數(shù)軸上A、B兩點(diǎn)之間距離為20,其中AB的左側(cè),且A、B兩點(diǎn)經(jīng)折疊后重合,求A、B兩點(diǎn)表示的數(shù)各是多少

已知在數(shù)軸上點(diǎn)M表示的數(shù)是m,點(diǎn)M到第②題中的A、B兩點(diǎn)的距離之和為30,求m的值。

【答案】13;(2)①9;②A表示的數(shù)是-8,點(diǎn)B表示的數(shù)是12;③-13或17.

【解析】

1)直接利用已知得出中點(diǎn)進(jìn)而得出答案;
2)①利用-2表示的點(diǎn)與6表示的點(diǎn)重合得出中點(diǎn),進(jìn)而得出答案;
②利用數(shù)軸再結(jié)合A、B兩點(diǎn)之間距離為20,即可得出兩點(diǎn)表示出的數(shù)據(jù);
③利用②中A,B的位置,利用分類討論進(jìn)而得出m的值.

解:(1)折疊紙面,使1表示的點(diǎn)與-1表示的點(diǎn)重合,則對(duì)稱中心是0,
-3表示的點(diǎn)與3表示的點(diǎn)重合,
故答案為:3
2)∵-2表示的點(diǎn)與6表示的點(diǎn)重合,
∴對(duì)稱中心是數(shù)2表示的點(diǎn),
-5表示的點(diǎn)與數(shù)9表示的點(diǎn)重合;
故答案為:9

②若數(shù)軸上AB兩點(diǎn)之間的距離為20AB的左側(cè)),
則點(diǎn)A表示的數(shù)是2-10=-8,點(diǎn)B表示的數(shù)是2+10=12
③當(dāng)點(diǎn)M在點(diǎn)A左側(cè)時(shí),則12-m+-8-m=30
解得:m=-13;
當(dāng)點(diǎn)M在點(diǎn)B右側(cè)時(shí),則m--8+m-12=30,
解得:m=17
綜上,m=-1317;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)關(guān)于x的一元二次方程M ;N ,其中,有下列三個(gè)結(jié)論:

①若方程M有兩個(gè)相等的實(shí)數(shù)根,則方程N也有兩個(gè)相等的實(shí)數(shù)根;

②若6是方程M的一個(gè)根,則是方程N的一個(gè)根;

③若方程M和方程N有一個(gè)相同的根,則這個(gè)根一定是其中正確結(jié)論的個(gè)數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于任意的函數(shù)值,都滿足,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個(gè)單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時(shí),滿足?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的中線BD,CE交于點(diǎn)O,F,G分別是BO,CO的中點(diǎn).

1)求證:四邊形DEFG是平行四邊形;

2)若ABAC,則四邊形DEFG (填寫特殊的平行四邊形);

3)當(dāng)四邊形DEFG為邊長(zhǎng)為2的正方形時(shí),的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,在下列五個(gè)結(jié)論中: abc0;4ac﹣b20a﹣b+c2;ab0ac+2=b,

正確的個(gè)數(shù)有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:中,,求證:,下面寫出可運(yùn)用反證法證明這個(gè)命題的四個(gè)步驟:

①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個(gè)步驟正確的順序應(yīng)是(  )

A.③④②①B.③④①②C.①②③④D.④③①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)到3秒鐘時(shí),兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知?jiǎng)狱c(diǎn)A、B的運(yùn)動(dòng)速度比之是3:2(速度單位:1個(gè)單位長(zhǎng)度/秒).

(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;

(2)A、B兩點(diǎn)運(yùn)動(dòng)到3秒時(shí)停止運(yùn)動(dòng),請(qǐng)?jiān)跀?shù)軸上標(biāo)出此時(shí)A、B兩點(diǎn)的位置;

(3)若A、B兩點(diǎn)分別從(2)中標(biāo)出的位置再次同時(shí)開始在數(shù)軸上運(yùn)動(dòng),運(yùn)動(dòng)的速度不變,運(yùn)動(dòng)的方向不限,問:經(jīng)過幾秒鐘,A、B兩點(diǎn)之間相距4個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根

1求實(shí)數(shù)k的取值范圍;

2滿足,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案