【題目】如圖,邊長(zhǎng)分別為2和4的兩個(gè)全等三角形,開(kāi)始它們?cè)谧筮呏丿B,大△ABC固定不動(dòng),然后把小△A′B′C′自左向右平移,直至移到點(diǎn)B′到C重合時(shí)停止,設(shè)小三角形移動(dòng)的距離為x,兩個(gè)三角形的重合部分的面積為y,則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點(diǎn)P是直線DB上一個(gè)動(dòng)點(diǎn),連接AP,作PE⊥AP交BC所在的直線于點(diǎn)E.
(1)如圖1,點(diǎn)P在BD的延長(zhǎng)線上,PE⊥EC,AD=1,直接寫出PE的長(zhǎng);
(2)點(diǎn)P在線段BD上(不與B,D重合),依題意,將圖2補(bǔ)全,求證:PA=PE;
(3)點(diǎn)P在DB的延長(zhǎng)線上,依題意,將圖3補(bǔ)全,并判斷PA=PE是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),D(6,4),將線段AD平移得到BC,使B(0,b),且a,b滿足|a﹣2|+=0,延長(zhǎng)BC交x軸于點(diǎn)E.
(1)填空:點(diǎn)A( , ),點(diǎn)B( , ),∠DAE= ;
(2)求點(diǎn)C和點(diǎn)E的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),且PA>AE,探究∠APC與∠PCB的數(shù)量關(guān)系?寫出你的結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點(diǎn)A(﹣1,m)和點(diǎn)B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個(gè)函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙兩個(gè)小組進(jìn)入決賽,評(píng)委從研究報(bào)告、小組展示、答辯三個(gè)方面為各小組打分,各項(xiàng)成績(jī)均按百分制記錄.甲、乙兩個(gè)小組各項(xiàng)得分如下表:
小組 | 研究報(bào)告 | 小組展示 | 答辯 |
甲 | 91 | 80 | 78 |
乙 | 79 | 83 | 90 |
(1)計(jì)算各小組的平均成績(jī),并從高分到低分確定小組的排名順序;
(2)如果研究報(bào)告、小組展示、答辯按照4:3:3計(jì)算成績(jī),哪個(gè)小組的成績(jī)最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在△AFD和△CEB中,點(diǎn)A、E、F、C在同一直線上,AE=CF,∠B=∠D,AD∥BC.
(1)AD與BC相等嗎?請(qǐng)說(shuō)明理由;
(2)BE與DF平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:
(1)、∠1+∠2=90°;(2)、BE∥DF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com