【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連接EF、EO,若DE=2,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
【答案】(1);(2)π﹣.
【解析】
(1)根據(jù)垂徑定理得CE的長(zhǎng),再根據(jù)已知DE平分AO得CO=AO=OE,根據(jù)勾股定理列方程求解.
(2)先求出扇形的圓心角,再根據(jù)扇形面積和三角形的面積公式計(jì)算即可.
解:(1)連接OF,
∵直徑AB⊥DE,
∴CE=DE=1.
∵DE平分AO,
∴CO=AO=OE.
設(shè)CO=x,則OE=2x.
由勾股定理得:12+x2=(2x)2.
x=.
∴OE=2x=.
即⊙O的半徑為.
(2)在Rt△DCP中,
∵∠DPC=45°,
∴∠D=90°﹣45°=45°.
∴∠EOF=2∠D=90°.
∴S扇形OEF==π.
∵∠EOF=2∠D=90°,OE=OF=
SRt△OEF==.
∴S陰影=S扇形OEF﹣SRt△OEF=π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為12的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個(gè)三角形重疊部分的面積為32時(shí),它移動(dòng)的距離AA′等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E是矩形ABCD的邊BC上一點(diǎn),EF⊥AE,分別交AC,CD于點(diǎn)M,F,BG⊥AC,垂足為G,BG交AE于點(diǎn)H.
(1)求證:△ABE∽△ECF;
(2)找出與△ABH相似的三角形,并證明;
(3)若E是BC中點(diǎn),BC=2AB,AB=4,求EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E是邊BC上一點(diǎn),連接AE,過點(diǎn)E作EM⊥AE,交對(duì)角線AC于點(diǎn)M,過點(diǎn)M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長(zhǎng)EM至點(diǎn)F,使EF=EA,連接AF,過點(diǎn)F作FH⊥DC,垂足為H.猜想CH與FH存在的數(shù)量關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角(0°<<90°)得到△DEC,設(shè)CD交AB于點(diǎn)F,連接AD,當(dāng)旋轉(zhuǎn)角度數(shù)為________,△ADF是等腰三角形.
A.20°B.40°C.10°D.20°或40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國(guó)古代數(shù)學(xué)形成了完整的體系.“折竹抵地”問題源自《九章算術(shù)》中:“今有竹高一丈,末折抵地,去本四尺,問折者高幾何?”意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)( )
A.3B.5C.4.2D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.
填空:①則的值為______;②∠EAD的度數(shù)為_______.
(2)類比探究
如圖2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.請(qǐng)求出的值及∠EAD的度數(shù);
(3)拓展延伸
如圖3,在(2)的條件下,取線段DE的中點(diǎn)M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時(shí),求線段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,直線分別與,軸交于點(diǎn),,與反比例函數(shù)的圖象分別交于點(diǎn),, 軸于點(diǎn), ,,.
(1)求的長(zhǎng);
(2)求反比例函數(shù)的解析式;
(3)連接,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在近期“抗疫”期間,某藥店銷售A、B兩種型號(hào)的口罩,已知銷售800只A型和450只B型的利潤(rùn)為210元,銷售400只A型和600只B型的利潤(rùn)為180元.
(1)求每只A型口罩和B型口罩的銷售利潤(rùn);
(2)該藥店計(jì)劃一次購進(jìn)兩種型號(hào)的口罩共2000只,其中B型口罩的進(jìn)貨量不超過A型口罩的3倍,設(shè)購進(jìn)A型口罩x只,這2000只口罩的銷售總利潤(rùn)為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該藥店購進(jìn)A型、B型口罩各多少只,才能使銷售總利潤(rùn)最大?
(3)在銷售時(shí),該藥店開始時(shí)將B型口罩提價(jià)100%,當(dāng)收回成本后,為了讓利給消費(fèi)者,決定把B型口罩的售價(jià)調(diào)整為進(jìn)價(jià)的15%,求B型口罩降價(jià)的幅度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com