如圖所示,在△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出以下四個結(jié)論:①BE=AF,②S△EPF的最小值為數(shù)學(xué)公式,③tan∠PEF=數(shù)學(xué)公式,④S四邊形AEPF=1,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合),上述結(jié)論始終正確是________.

①②④
分析:根據(jù)全等三角形的判定和等腰三角形的性質(zhì),對題中選項(xiàng)一一證明,得出正確結(jié)果.
解答:解:連接PA.
∵AB=AC,∠BAC=90°,P是BC的中點(diǎn),
∴PA=PC,∠APC=90°,∠PAE=∠PCF=45°.
∵∠FPE=∠APC=90°,
∴∠CPF=∠APE.
∵PA=PC,∠PAE=∠PCF,
∴△CFP≌△AEP.
∴AE=CF.
∵AB-AE=AC-CF,
∴BE=AF,故①始終正確;
∵△CFP≌△AEP,
∴PE=PF.
∵∠EPF=90°,
∴△EPF為等腰直角三角形.
∴∠PEF=45°.
∴tan∠PEF=1,故③錯誤;
∵PA=BP,∠B=∠PAF,BE=AF,
∴△EBP≌△PAF.
∵S△EBP+S△AEP+S△PAF+S△CFP=S△ABC,S△AEP+S△PAF=S四邊形AEPF
∴S四邊形AEPF=S△ABC=(2×2÷2)=1,故④正確;
∴S△EPF的最小值為,故②正確.
故選①②④.
點(diǎn)評:本題把全等三角形的判定和等腰三角形的性質(zhì)結(jié)合求解.綜合性強(qiáng),難度較大.考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長線上一點(diǎn),過點(diǎn)A作AF∥BC交ED的延長線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(不包括點(diǎn)C),點(diǎn)P的運(yùn)動速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(不包括點(diǎn)A),運(yùn)動速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過多長時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案