【題目】一個有進水管與出水管的容器,從某時刻開始4 min內(nèi)只進水不出水,在隨后的8 min內(nèi)既進水又出水,每分的進水量和出水量是兩個常數(shù).容器內(nèi)的水量y(單位:L)與時間x(單位:min)之間的關(guān)系如圖所示.

(1)當(dāng)4≤x≤12時,求y關(guān)于x的函數(shù)解析式;

(2)直接寫出每分進水,出水各多少升.

【答案】(1)yx15(4≤x≤12)23.75L

【解析】試題分析:(1)用待定系數(shù)法求對應(yīng)的函數(shù)關(guān)系式;

2)每分鐘的進水量根據(jù)前4分鐘的圖象求出,出水量根據(jù)后8分鐘的水量變化求解.

試題解析:(1)設(shè)當(dāng)4≤x≤12時的直線方程為:y=kx+bk≠0).圖象過(4,20)、(12,30),,解得: ,4≤x≤12);

2)根據(jù)圖象,每分鐘進水20÷4=5升,設(shè)每分鐘出水m升,則 5×8﹣8m=30﹣20,解得:m=

故每分鐘進水、出水各是5升、升.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接五一勞動節(jié),某超市開展促銷活動,決定對A,B兩種商品進行打折出售.打折前,買6A商品和3B商品需要108元,買3A商品和4B商品需要94元.問:打折后,若買5A商品和4B商品僅需86元,比打折前節(jié)省了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a>0)的兩個實數(shù)根x1 , x2滿足x1+x2=4和x1x2=3,那么二次函數(shù)ax2+bx+c(a>0)的圖象有可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明題
(1)已知一元二次方程x2+px+q=0(p2-4q≥0的兩根為x1、x2;求證:x1+x2=-p , x1 x2=q
(2)已知拋物線y=x2+px+q與x軸交于A、B兩點,且過點(-1,-1),設(shè)線段AB的長為d,當(dāng)p為何值時,d2取得最小值,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在正是草莓熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進草莓40箱,已知第一、二次進貨價分別為每箱50元、40元,且第二次比第一次多付款700元.

(1)設(shè)第一、二次購進草莓的箱數(shù)分別為a箱、b箱,求a,b的值;

(2)若商店對這40箱草莓先按每箱60元銷售了x箱,其余的按每箱35元全部售完.

①求商店銷售完全部草莓所獲利潤y(元)與x(箱)之間的函數(shù)關(guān)系式;

②當(dāng)x的值至少為多少時,商店才不會虧本.(注:按整箱出售,利潤=銷售總收入-進貨總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若9的平方根是a,b的絕對值是4,求a+b的值.

(2)已知一個數(shù)的平方根是3a+1和a+11,求這個數(shù)的立方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a,b滿足,解關(guān)于x的方程(a+2)x+b2=a-1.

(2)實數(shù)a,b互為相反數(shù),c,d互為倒數(shù),x的絕對值為,求代數(shù)式x2+(a+b)cdx+的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=2的拋物線y=x2+bx+c與x軸交于點A和點B,與y軸交于點C,且點A的坐標(biāo)為(﹣1,0)
注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(﹣

(1)求拋物線的解析式;
(2)直接寫出B、C兩點的坐標(biāo);
(3)求過O,B,C三點的圓的面積.(結(jié)果用含π的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于不等式組 下列說法正確的是( 。

A. 此不等式組無解 B. 此不等式組有7個整數(shù)解

C. 此不等式組的負(fù)整數(shù)解是﹣3,21 D. 此不等式組的解集是x≤2

查看答案和解析>>

同步練習(xí)冊答案