已知:矩形OABC中,A(6,0),B(6,4),F(xiàn)為AB邊的中點(diǎn),直線EF交邊BC于E,且sin∠BEF=,P為線段EF上一動點(diǎn),PM⊥OA于M,PN⊥OC于N.
(1)求直線EF的函數(shù)解析式并注明自變量取值范圍;
(2)求矩形ONPM的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)矩形ONPM、矩形OABC有可能相似嗎?若相似,求出此時(shí)點(diǎn)P的坐標(biāo);若不相似,請簡要說明理由.

【答案】分析:(1)根據(jù)A(6,0),B(6,4)兩點(diǎn)的坐標(biāo),進(jìn)而可以得出F點(diǎn)的坐標(biāo),再利用sin∠BEF=,即可得出EF的長,進(jìn)而得出BE的長,即可得出E點(diǎn)坐標(biāo),進(jìn)而求出直線EF的函數(shù)解析式;
(2)設(shè)矩形ONPM的面積為S,表示出OM,NO,再利用二次函數(shù)最值求出即可;
(3)利用矩形ONPM、矩形OABC相似時(shí),對應(yīng)邊比值相等求出即可.
解答:解:(1)∵F為AB中點(diǎn),AB=4,
∴AF=2,BF=2,F(xiàn)(6,2),
在Rt△BEF中,EF===2,
∴BE=,
∴CE=6-4=2,
∴E(2,4),
設(shè)直線EF的函數(shù)解析式為y=kx+b,
把E(2,4)、F(6,2)分別代入
解得:,
∴直線EF的函數(shù)解析式為(2≤x≤6).

(2)設(shè)矩形ONPM的面積為S,
∵點(diǎn)P在直線上,
∴OM=x,ON=
∴S==,
∴矩形ONPM的面積S的最大值為
此時(shí),x=5,點(diǎn)P的坐標(biāo)為(5,).

(3)當(dāng)矩形ONPM、矩形OABC相似時(shí),

,
,且滿足2≤x≤6,
此時(shí),點(diǎn)P的坐標(biāo)為
點(diǎn)評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及二次函數(shù)的最值和矩形的相似性質(zhì)等知識,利用數(shù)形結(jié)合得出E,F(xiàn)點(diǎn)的坐標(biāo)以及根據(jù)二次函數(shù)最值得出是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:矩形OABC中,A(6,0),B(6,4),F(xiàn)為AB邊的中點(diǎn),直精英家教網(wǎng)線EF交邊BC于E,且sin∠BEF=
5
5
,P為線段EF上一動點(diǎn),PM⊥OA于M,PN⊥OC于N.
(1)求直線EF的函數(shù)解析式并注明自變量取值范圍;
(2)求矩形ONPM的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)矩形ONPM、矩形OABC有可能相似嗎?若相似,求出此時(shí)點(diǎn)P的坐標(biāo);若不相似,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:矩形OABC中,OC=4,OA=3.在如圖所示的平面直角坐標(biāo)系中,將圖①中的矩形OABC沿對角線AC剪開,再把△ABC沿BA方向平移3個(gè)單位,得到圖②中的△A′B′C′,A′C′交y軸于E點(diǎn),B′C′交AC于F點(diǎn).
求:E點(diǎn)和F點(diǎn)的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:矩形OABC中,OC=4,OA=3.在如圖所示的平面直角坐標(biāo)系中,將圖①中的矩形OABC沿對角線AC剪開,再把△ABC沿BA方向平移3個(gè)單位,得到圖②中的△A′B′C′,A′C′交y軸于E點(diǎn),B′C′交AC于F點(diǎn).
求:E點(diǎn)和F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年安徽省安慶市四中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知:矩形OABC中,OC=4,OA=3.在如圖所示的平面直角坐標(biāo)系中,將圖①中的矩形OABC沿對角線AC剪開,再把△ABC沿BA方向平移3個(gè)單位,得到圖②中的△A′B′C′,A′C′交y軸于E點(diǎn),B′C′交AC于F點(diǎn).
求:E點(diǎn)和F點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案