【題目】若有理數(shù) a,b 滿足,則a=____, b=____.
【答案】(m-2,n+2)或(m-6,n-5)
【解析】
根據(jù)等式分兩種情況討論即可;
①分A點(diǎn)平移到y(tǒng)軸上、B點(diǎn)平移到x軸上和A點(diǎn)平移到x軸上、B點(diǎn)平移到y(tǒng)軸上兩種情況討論即可.
②根據(jù)CD∥AB,得到∠B=∠DCE,∠A+∠ADC=,再根據(jù)CF平分∠DCE,DG平分∠ADC,得到∠DCF=∠B,∠CDG=,又因?yàn)?/span>D、G、F在同一條直線上,所以∠CDG=∠F+∠DCF,,最后根據(jù)∠A+∠B=3∠F即可求解.
解:∵
∴
當(dāng)=時(shí)
當(dāng)時(shí)
①第一種情況:AB先向左平移2個(gè)單位,再向上平移2個(gè)單位.
則平移后點(diǎn) P 的坐標(biāo)為(m-2,n+2)
第二種情況:AB先向下平移5個(gè)單位,再向左平移6個(gè)單位.
則平移后點(diǎn) P 的坐標(biāo)為(m-6,n-5).
②∵CD∥AB
∴∠B=∠DCE,∠A+∠ADC=
∵CF平分∠DCE,DG平分∠ADC
∴∠DCF=∠B,∠CDG=
∵F在GD的延長(zhǎng)線上
∴D、G、F在同一條直線上
∴∠CDG是的外角
∴∠CDG=∠F+∠DCF
∴
∵∠A+∠B=3∠F
∴
∠F=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽(tīng)寫(xiě)”比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成圖1的條形統(tǒng)計(jì)圖和圖2扇形統(tǒng)計(jì)圖,但均不完整.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)求參加比賽的學(xué)生共有多少名?并補(bǔ)全圖1的條形統(tǒng)計(jì)圖.
(2)在圖2扇形統(tǒng)計(jì)圖中,m的值為 ,表示“D等級(jí)”的扇形的圓心角為 度;
(3)組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽(tīng)寫(xiě)”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按所選的第一題計(jì)分.
A.如圖,DE為△ABC的中位線,點(diǎn)F為DE上一點(diǎn),且∠AFB=90°,若AB=8,BC=10,則EF的長(zhǎng)為 .
B.小智同學(xué)在距大雁塔塔底水平距離為138米處,看塔頂?shù)难鼋菫?4.8(不考慮身高因素),則大雁塔市約為米.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn) A(a+b,2-a)與點(diǎn)B(a-5,b-2a)關(guān)于y軸對(duì)稱.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)如果點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)是C,在圖中標(biāo)出點(diǎn)A、B、C,并求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,將矩形ABCD繞B逆時(shí)針旋轉(zhuǎn)30°后得到矩形GBEF,延長(zhǎng)DA交FG于點(diǎn)H,則GH的長(zhǎng)為( )
A.8﹣4
B. ﹣4
C.3 ﹣4
D.6﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知 CD⊥AB,EF⊥AB,垂足分別為D,F,∠B+∠BDG=180°, 試說(shuō)明∠BEF=∠CDG.將下面的解答過(guò)程補(bǔ)充完整,并填空(填寫(xiě)理由依據(jù)或數(shù)學(xué)式, 將答案按序號(hào)填在答題卷的對(duì)應(yīng)位置內(nèi))
證明:∵CD⊥AB,EF⊥AB( ① )
∴∠BFE=∠BDC=90°( ② )
∴EF∥CD( ③ )
∴∠BEF= ④ ( ⑤ )
又∵∠B+∠BDG=180°( ⑥ )
∴BC∥DG( ⑦ )
∴∠CDG= ⑧ ( ⑨ )
∴∠CDG=∠BEF( ⑩ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E,F(xiàn),則線段B′F的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,CD是AB邊上的高,AC=4,BC=3,DB=
求:(1)求AD的長(zhǎng);
(2)△ABC是直角三角形嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com