【題目】在等腰△ABC中,AB=AC,AC腰上的中線BD將三角形周長(zhǎng)分為1521兩部分,則這個(gè)三角形的底邊長(zhǎng)為______

【答案】168

【解析】

本題由題意可知有兩種情況,AB+AD=15AB+AD=21.從而根據(jù)等腰三角形的性質(zhì)及三角形三邊關(guān)系可求出底邊為816

解:∵BD是等腰△ABC的中線,可設(shè)AD=CD=x,則AB=AC=2x

又知BD將三角形周長(zhǎng)分為1521兩部分,

∴可知分為兩種情況

AB+AD=15,即3x=15,解得x=5,此時(shí)BC=21x=215=16;

AB+AD=21,即3x=21,解得x=7;此時(shí)等腰△ABC的三邊分別為14,148

經(jīng)驗(yàn)證,這兩種情況都是成立的.

∴這個(gè)三角形的底邊長(zhǎng)為816

故答案為:168

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)七、八年級(jí)各選派10名選手參加學(xué)校舉辦的愛(ài)我荊門(mén)知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為ab

隊(duì)別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

七年級(jí)

6.7

m

3.41

90%

n

八年級(jí)

7.1

7.5

1.69

80%

10%

1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a,b的值;

2)直接寫(xiě)出表中的m,n的值;

3)有人說(shuō)七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí),所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說(shuō)八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,推理填空:

(1)∵∠1=_______(已知),

∴AC∥ED(同位角相等,兩直線平行).

(2)∵∠2=______(已知),

∴AB∥FD(內(nèi)錯(cuò)角相等,兩直線平行).

(3)∵∠2+_______=180°(已知),

∴AC∥ED(同旁內(nèi)角互補(bǔ),兩直線平行).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三角形能被一條線段分割成兩個(gè)等腰三角形,那么稱這條線段為這個(gè)三角形的特異線,稱這個(gè)三角形為特異三角形.

(1)如圖1,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點(diǎn)D,交BC于點(diǎn)E.求證:AE是△ABC的一條特異線.
(2)如圖2,已知△ABC是特異三角形,且∠A=30°,∠B為鈍角,求出所有可能的∠B的度數(shù).
(3)如圖3,△ABC是一個(gè)腰長(zhǎng)為2的等腰銳角三角形,且它是特異三角形,若它的頂角度數(shù)為整數(shù),請(qǐng)求出其特異線的長(zhǎng)度;若它的頂角度數(shù)不是整數(shù),請(qǐng)直接寫(xiě)出頂角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩種包裝盒,大盒比小盒可多裝20克某一物品.已知120克這一物品單獨(dú)裝滿小盒比單獨(dú)裝滿大盒多1盒.
(1)問(wèn)小盒每個(gè)可裝這一物品多少克?
(2)現(xiàn)有裝滿這一物品兩種盒子共50個(gè).設(shè)小盒有n個(gè),所有盒子所裝物品的總量為w克. ①求w關(guān)于n的函數(shù)解析式,并寫(xiě)出定義域;
②如果小盒所裝物品總量與大盒所裝物品總量相同,求所有盒子所裝物品的總量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)C(3,4),邊OA落在x正半軸上,P為線段AC上一點(diǎn),過(guò)點(diǎn)P分別作DE∥OC,F(xiàn)G∥OA交平行四邊形各邊如圖.若反比例函數(shù) 的圖象經(jīng)過(guò)點(diǎn)D,四邊形BCFG的面積為8,則k的值為( )

A.16
B.20
C.24
D.28

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.則下列結(jié)論:①AD=BE;②PQAE;③AP=BQ;④DE=DP.其中正確的是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為創(chuàng)建綠色學(xué)校,綠化校園環(huán)境,我校計(jì)劃分兩次購(gòu)進(jìn)AB兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5棵,共花費(fèi)265(兩次購(gòu)進(jìn)同種花草價(jià)格相同)

(1)A、B兩種花草每棵的價(jià)格分別是多少元?

(2)若購(gòu)買(mǎi)A、B兩種花草共30棵,且B種花草的數(shù)量不高于A種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED

2)若∠B=30°,CD=1,求BD的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案