【題目】如圖,在ABC中,∠C90°,以A為圓心,任意長為半徑畫弧,分別交ACAB于點(diǎn)M,N,再分別以M,N為圓心,大于MN長為半徑畫弧,兩弧交于點(diǎn)O,作射線AO,交BC于點(diǎn)E.已知CE3,BE5,則AC的長為(  )

A.8B.7C.6D.5

【答案】C

【解析】

直接利用基本作圖方法得出AE是∠CAB的平分線,進(jìn)而結(jié)合全等三角形的判定與性質(zhì)得出ACAD,再利用勾股定理得出AC的長.

過點(diǎn)EEDAB于點(diǎn)D,

由作圖方法可得出AE是∠CAB的平分線,

ECACEDAB

ECED3,

RtACERtADE中,

RtACERtADEHL),

ACAD,

∵在RtEDB中,DE3,BE5

BD4,

設(shè)ACx,則AB4+x,

故在RtACB中,

AC2+BC2AB2,

x2+82=(x+42,

解得:x6,

AC的長為:6

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l與坐標(biāo)軸相交于點(diǎn)M(3,0),N(0,﹣4),反比例函數(shù)y=(x>0)的圖象經(jīng)過Rt△MON的外心A.

(1)求直線l的解析式;

(2)直接寫出點(diǎn)A坐標(biāo)及k值;

(3)在函數(shù)y=(x>0)的圖象上取異于點(diǎn)A的一點(diǎn)B,作BC⊥x軸于點(diǎn)C,連接OB交直線l于點(diǎn)P,若△OMP的面積與△OBC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cosABO=,過P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BFDE相交于點(diǎn)G,連接CGBD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:

①∠ADE=DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個(gè)數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰與等腰,,,,連接相交于點(diǎn),交于點(diǎn),交與點(diǎn).下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一種動(dòng)畫程序,在平面直角坐標(biāo)系屏幕上,直角三角形是黑色區(qū)域(含直角三角形邊界),其中A1,1),B2,1),C1,3),用信號(hào)槍沿直線y3x+b發(fā)射信號(hào),當(dāng)信號(hào)遇到黑色區(qū)域時(shí),區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的b的取值范圍是( 。

A.5≤b≤0B.5b≤3C.5≤b≤3D.5≤b≤5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC的長為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點(diǎn)G,作射線AGCD于點(diǎn)H,若∠C=120°,則∠AHD=( 。

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角中,,,的平分線交于點(diǎn).

1)求證:;

2)若的外角平分線以及的平分線交于點(diǎn),(1)結(jié)論是否成立?請?jiān)趫D中補(bǔ)全圖形,寫出結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(m+3)xm+1=0.

(1)求證:無論m取何值,原方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)x1x2是原方程的兩根,且|x1x2|=2,求m的值.

查看答案和解析>>

同步練習(xí)冊答案