(2002•濟南)已知拋物線過A(-1,0)和B(3,0)與y軸交于點C且BC=3,則這條拋物線解析式為( )
A.y=-x2+2x+3
B.y=x2-2x-3
C.y=x2+2x-3或y=-x2+2x+3
D.y=-x2+2x+3或y=x2-2x-3
【答案】分析:觀察A、B兩點坐標的特點,可以推出A、B為拋物線與x軸的交點;然后利用勾股定理求出C點的縱坐標,最后用待定系數(shù)法求出函數(shù)的解析式.
解答:解:∵A、B兩點的縱坐標為0.
∴A、B為拋物線與x軸的交點,
∴△OBC為直角三角形.
又∵C點有可能在y軸的負半軸,也可能在y軸的正半軸.
∴C點的縱坐標為3或-3(根據(jù)勾股定理求得).
∴C點的縱坐標為(0,3)或(0,-3).
設函數(shù)的解析式為y=ax2+bx+c,
(1)則當拋物線經過(-1,0)、(3,0)、(0,-3)三點時,
a-b+c=0  9a+3b+c=0  c=-3解得:a=1 b=-2 c=-3,
則解析式為y=x2-2x-3;
(2)則當拋物線經過(-1,0)、(3,0)、(0,3)三點時,
a-b+c=0  9a+3b+c=0  c=3解得:a=1 b=2 c=-3,
則解析式為y=x2+2x+3.
故選D.
點評:分類討論思想在解決數(shù)學問題時經常用到,有些同學在解題時不注意而造成漏解的情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:選擇題

(2002•濟南)已知拋物線過A(-1,0)和B(3,0)與y軸交于點C且BC=3,則這條拋物線解析式為( )
A.y=-x2+2x+3
B.y=x2-2x-3
C.y=x2+2x-3或y=-x2+2x+3
D.y=-x2+2x+3或y=x2-2x-3

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2002•濟南)如圖,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P與AB相切于點Q.設AC=a,BD=b(a≤b).
(1)求⊙P的半徑r;
(2)以AB為直徑在AB的上方作半圓O(用尺規(guī)作圖,保留痕跡,不寫作法),請你探索⊙O與⊙P的位置關系,做出判斷并加以證明;
(3)設a=2,b=4,能否在半圓O中,再畫出兩個與⊙P同樣大小的⊙M和⊙N,使這3個小圓兩兩相交,并且每兩個小圓的公共部分的面積都小于π?請說出你的結論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2002•濟南)如圖,已知AB,CD分別是半圓O的直徑和弦,AD和BC相交于點E,若∠AEC=α,則S△CDE:S△ABE等于( )

A.sinα
B.cosα
C.sin2α
D.cos2α

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2002•濟南)如圖,已知直線y=-x+6與x軸交于點A,與y軸交于點B,點P為x軸上可以移動的點,且點P在點A的左側,PM⊥x軸,交直線y=-x+6于點M,有一個動圓O′,它與x軸、直線PM和直線y=-x+6都相切,且在x軸的上方.當⊙O'與y軸也相切時,點P的坐標是   

查看答案和解析>>

同步練習冊答案