試討論關(guān)于x的方程2x-1=mx(m≠2)的解是正數(shù)、負(fù)數(shù)還是0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,是原點(diǎn),三點(diǎn)的坐標(biāo)分別,四邊形是梯形,點(diǎn)同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)沿向終點(diǎn)運(yùn)動(dòng),速度為每秒個(gè)單位,點(diǎn)沿向終點(diǎn)運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)求直線的解析式.
(2)設(shè)從出發(fā)起,運(yùn)動(dòng)了秒.如果點(diǎn)的速度為每秒個(gè)單位,試寫出點(diǎn)的坐標(biāo),并寫出此時(shí) 的取值范圍.
(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了秒.當(dāng),兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形的周長的一半,這時(shí),直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.
【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應(yīng)分Q在OC上,和在CB上兩種情況進(jìn)行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個(gè)關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進(jìn)行檢驗(yàn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)南市九年級下學(xué)期模擬考試數(shù)學(xué)卷(解析版) 題型:解答題
如圖,在直角坐標(biāo)系中,是原點(diǎn),三點(diǎn)的坐標(biāo)分別,四邊形是梯形,點(diǎn)同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)沿向終點(diǎn)運(yùn)動(dòng),速度為每秒個(gè)單位,點(diǎn)沿向終點(diǎn)運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)求直線的解析式.
(2)設(shè)從出發(fā)起,運(yùn)動(dòng)了秒.如果點(diǎn)的速度為每秒個(gè)單位,試寫出點(diǎn)的坐標(biāo),并寫出此時(shí) 的取值范圍.
(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了秒.當(dāng),兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形的周長的一半,這時(shí),直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.
【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應(yīng)分Q在OC上,和在CB上兩種情況進(jìn)行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個(gè)關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進(jìn)行檢驗(yàn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com