【題目】年疫情期間,長沙市教育局出臺《長沙市中小學線上教學工作實施意見》,長沙市推出名師公益大課堂,為學生提供線上直播教學,據(jù)統(tǒng)計,第一批公益課受益學生萬人次,第三批公益課受益學生萬人次.

(1)如果第二批,第三批公益課受益學生人次的增長率相同,求這個增長率;

(2)按照這個增長率,預計第四批公益課受益學生將達到多少萬人次?

【答案】110%;(25.324(萬人)

【解析】

1)設增長率為x,根據(jù)“第一批公益課受益學生4萬人次,第三批公益課受益學生4.84萬人次”可列方程求解;

2)用4.84×1+x),x為(1)中所求出的增長率,據(jù)此計算即可求解.

1)設增長率為x,根據(jù)題意,得

4(1+x)2=4.84

解得x1=-2.1(舍去),x2=0.1=10%

故增長率為10%

故答案為10%

2)按照增長率10%,第四批公益課受益學生可達到的人數(shù)為:

4.84(1+10%)=5.324(萬人).
故第四批公益課受益學生將達到5.324萬人次.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的進步和網絡資源的豐富,在線學習已成為更多人的自主學習選擇,某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論,為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調查,并根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

1)求本次調查的學生總人數(shù),并通過計算補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應的扇形圓心角的度數(shù);

3)該校共有學生1800人,請你估計該校對在線閱讀最感興趣的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC

1)試判斷BC與⊙O的位置關系,并說明理由;

2)若∠BAC=60°OA=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的二次函數(shù)的圖象開口向下,的部分對應值如下表所示:

下列判斷,①;②;③方程有兩個不相等的實數(shù)根;

④若,則,正確的是________________(填寫正確答案的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線軸、軸分別交于兩點,將沿軸正方向平移后,點、點的對應點分別為點、點,且四邊形為菱形,連接,拋物線經過三點,點上方拋物線上一動點,作,垂足為

求此拋物線的函數(shù)關系式;

求線段長度的最大值;

如圖②,延長軸于點,連接,若為等腰三角形,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,分別為上的點,沿直線折疊,使點B恰好落在上的處,當恰好為直角三角形時,的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于AB兩點,與y軸交于C點,直線BD交拋物線于點D,并且,

1)求拋物線的解析式;

2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C,求面積的最大值;

3)在(2)中面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,D為圓上的兩點,OCBD,弦AD,BC相交于點E

1)求證:;

2)若CE1,EB3,求⊙O的半徑;

3)在(2)的條件下,過點C作⊙O的切線,交BA的延長線于點P,過點PPQCB交⊙OF,Q兩點(點F在線段PQ上),求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一天,水果經營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發(fā)價和零售價如表所示:

品名

獼猴桃

芒果

批發(fā)價千克

20

40

零售價千克

26

50

他購進的獼猴桃和芒果各多少千克?

如果獼猴桃和芒果全部賣完,他能賺多少錢?

查看答案和解析>>

同步練習冊答案