【題目】已知:如圖一,拋物線(xiàn)y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線(xiàn)y=x-2經(jīng)過(guò)A、C兩點(diǎn),且AB=2.
(1)求拋物線(xiàn)的解析式;
(2)若直線(xiàn)DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線(xiàn)段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線(xiàn)DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s=,當(dāng)t為何值時(shí),s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y="-1/4" x2+3/2 x-2(2)1(3)當(dāng)t="2" /3 或t="10/" 7 時(shí),以P、B、D為頂點(diǎn)的三角形與△ABC相似,證明見(jiàn)解析
【解析】試題分析:(1)首先根據(jù)直線(xiàn)AC的解析式確定點(diǎn)A、C的坐標(biāo),已知AB的長(zhǎng),進(jìn)一步能得到點(diǎn)B的坐標(biāo);然后由待定系數(shù)法確定拋物線(xiàn)的解析式;(2)根據(jù)所給的s表達(dá)式,要解答該題就必須知道ED、OP的長(zhǎng);BP、CE長(zhǎng)由計(jì)算可知,那么由OP=OB﹣BP求得OP長(zhǎng),由∠CED的三角函數(shù)值可得到ED的長(zhǎng),再代入s的表達(dá)式中可得到關(guān)于s、t的函數(shù)關(guān)系式,結(jié)合函數(shù)的性質(zhì)即可得到s的最小值;(3)首先求出BP、BD的長(zhǎng),若以P、B、D為頂點(diǎn)的三角形與△ABC相似,已知的條件是公共角∠OBC,那么必須滿(mǎn)足的條件是夾公共角的兩組對(duì)應(yīng)邊成比例,分兩種情況討論即可.
試題解析:(1)由直線(xiàn):y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).設(shè)拋物線(xiàn)的解析式為:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得 a=﹣,∴拋物線(xiàn)的解析式:y=﹣(x﹣2)(x﹣4)=﹣x2+x﹣2;(2)在Rt△OBC中,OB=4,OC=2,則tan∠OCB=2;∵CE=t,∴DE=2t,而OP=OB﹣BP=4﹣2t;
∴s===(0<t<2),∴當(dāng)t=1時(shí),s有最小值,且最小值為1.
(3)在Rt△OBC中,OB=4,OC=2,則BC=2;在Rt△CED中,CE=t,ED=2t,則CD=t;
∴BD=BC﹣CD=2﹣t;若以P、B、D為頂點(diǎn)的三角形與△ABC相似,已知∠OBC=∠PBD,則有兩種情況:①=,解得 t=;②=,解得 t=;綜上所述,當(dāng)t=或時(shí),以P、B、D為頂點(diǎn)的三角形與△ABC相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學(xué)用所學(xué)過(guò)的知識(shí)在一條筆直的道路上檢測(cè)車(chē)速.如圖,觀測(cè)點(diǎn)C到公路的距離CD為100米,檢測(cè)路段的起點(diǎn)A位于點(diǎn)C的南偏西60°方向上,終點(diǎn)B位于點(diǎn)C的南偏西45°方向上.某時(shí)段,一輛轎車(chē)由西向東勻速行駛,測(cè)得此車(chē)由A處行駛到B處的時(shí)間為4秒. 問(wèn)此車(chē)是否超過(guò)了該路段16米/秒的限制速度?(參考數(shù)據(jù): ≈1.4, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若代數(shù)式2x2-5x與代數(shù)式x2-6的值相等,則x的值是( )
A. -2或3B. 2或3C. -1或6D. 1或-6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算6x(3–2x)的結(jié)果,與下列哪一個(gè)式子相同( )
A. –12x2+18x B. –12x2+3 C. 16x D. 6x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△AˊBˊCˊ關(guān)于點(diǎn)O對(duì)稱(chēng),下列結(jié)論不正確的是( )
A. AO=AˊO
B. AB∥AˊBˊ
C. CO=BO
D. ∠BAC=∠BˊAˊCˊ
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E,F(xiàn),G,H分別為邊AB,BC,CD,DA上的點(diǎn),HA=EB=FC=GD,連接EG,F(xiàn)H,交點(diǎn)為O.
(1)如圖2,連接EF,F(xiàn)G,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結(jié)論;
(2)將正方形ABCD沿線(xiàn)段EG,HF剪開(kāi),再把得到的四個(gè)四邊形按圖3的方式拼接成一個(gè)四邊形.若正方形ABCD的邊長(zhǎng)為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B(﹣2,﹣1)與y軸交點(diǎn)為C與x軸交點(diǎn)為D.
(1)求一次函數(shù)的解析式;
(2)點(diǎn)P是x軸上一點(diǎn),且△ADP的面積是△AOD面積的2倍,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式由左邊到右邊的變形,是因式分解的是( )
A.3x(x+y)+3x2+3xy
B.﹣2x2﹣2xy=﹣2x(x+y)
C.(x+5)(x﹣5)=x2﹣25
D.x2+x+1=x(x+1)+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷對(duì)錯(cuò):對(duì)頂角是中心對(duì)稱(chēng)圖形;________________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com