(1)解方程:
1-x
2-x
-3=
1
x-2
;
(2)計算0.25×(-2)-2÷(16)-1-(π-3)0
(3)先化簡(
x+1
x-1
+
1
x2-2x+1
x
x-1
,然后選取一個你喜歡的x的值代入計算.
分析:(1)觀察可得最簡公分母是(x-2),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.
(2)本題涉及負整數(shù)指數(shù)冪、零指數(shù)冪兩個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.
(3)先將除法轉(zhuǎn)化為乘法,然后用乘法分配律簡化計算,最后選取一個合適的x的值代入計算.
解答:解:(1)方程兩邊同乘(x-2),
得:x-1-3(x-2)=1,
整理解得x=2.
經(jīng)檢驗,x=2是原方程的增根,
故原方程無解.

(2)原式=0.25×
1
4
×16-1=1-1=0.

(3)(
x+1
x-1
+
1
x2-2x+1
x
x-1

=[
x+1
x-1
+
1
(x-1)2
]•
x-1
x

=
x+1
x
+
1
x(x-1)

=
x2-1
x(x-1)
+
1
x(x-1)

=
x
x-1
,
取x=2,得原式=2.
點評:本題主要考查了解分式方程的能力,實數(shù)的綜合運算能力以及分式的混合運算能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當x≥0時,原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當x<o時,原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算下列各題:
(1)先化簡再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習冊答案