如圖,拋物線y=-x2+mx+n與x軸分別交于點(diǎn)A(4,0),B(-2,0),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;                                 
(2)M為第一象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M在何處時(shí),△ACM的面積最大;
(3)在拋物線的對(duì)稱軸上是否存在這樣的點(diǎn)P,使得△PAC為直角三角形?若存在,請(qǐng)求出所有可能點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

(1)y=-x2+2x+8;(2)(2,8);(3)(1,4+)或(1,4-

解析試題分析:(1)由拋物線股過點(diǎn)A(4,0),B(-2,0)根據(jù)待定系數(shù)法求解即可;
(2)設(shè)M坐標(biāo)為(a,-a 2+2a+8),先求得點(diǎn)C的坐標(biāo),再求得直線AC的解析式,過點(diǎn)M作x軸的垂線,交AC于N,則N的坐標(biāo)為(a,-2a+8),根據(jù)△ACM的面積=△MNC的面積+△AMN的面積再結(jié)合二次函數(shù)的性質(zhì)求解即可;
(3)分①當(dāng)∠ACP=90°時(shí),②當(dāng)∠CAP=90°時(shí),③當(dāng)∠APC=90°時(shí),這三種情況分析即可.
(1)∵y=-x2+mx+n與x軸分別交于點(diǎn)A(4,0),B(-2,0),
解得
∴拋物線的解析式為y=-x2+2x+8;
(2)設(shè)M坐標(biāo)為(a,-a 2+2a+8),其中a>0.
∵拋物線與y軸交于點(diǎn)C,
∴C(0,8).
∵A(4,0),C(0,8).
∴直線AC的解析式為y=-2x+8.
過點(diǎn)M作x軸的垂線,交AC于N,則N的坐標(biāo)為(a,-2a+8).
∴△ACM的面積=△MNC的面積+△AMN的面積=-a 2+4a=-(a-2)2+4
當(dāng)a=2,即M坐標(biāo)為(2,8)時(shí),△ACM的面積最大,最大面積為4;
(3)①當(dāng)∠ACP=90°時(shí),點(diǎn)P的坐標(biāo)為(1,9.5);
②當(dāng)∠CAP=90°時(shí),點(diǎn)P的坐標(biāo)為(1,-1.5); 
③當(dāng)∠APC=90°時(shí),點(diǎn)P的坐標(biāo)為(1,4+)或(1,4-).
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)N,直線y=kx+4與兩坐標(biāo)軸分別交于A、D兩點(diǎn),與拋物線交于點(diǎn)B(1,m)、C(2,2).

【小題1】求直線與拋物線的解析式.
【小題2】若拋物線在x軸上方的部分有一動(dòng)點(diǎn)P(x,y),設(shè)∠PON=,求當(dāng)△PON的面積最大時(shí)tan的值.
【小題3】若動(dòng)點(diǎn)P保持(2)中的運(yùn)動(dòng)線路,問是否存在點(diǎn)P,使得△POA的面積等于△PON的面積的?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東濟(jì)寧卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.女女
【小題1】求該拋物線的解析式;
【小題2】當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
【小題3】當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川樂山市區(qū)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),與y軸交于C點(diǎn),對(duì)稱軸與拋物線相交于點(diǎn)P,與直線BC相交于點(diǎn)M,連接PB.已知x1、x2

恰是方程的兩根,且sin∠OBC=.

1.求該拋物線的解析式;

2.拋物線上是否存在一點(diǎn)Q,使△QMB與△PMB的面積相等,若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由

3.在第一象限、對(duì)稱軸右側(cè)的拋物線上是否存在一點(diǎn)R,使△RPM與△RMB的面積相等,若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省九年級(jí)下學(xué)期第一次統(tǒng)考數(shù)學(xué)卷 題型:解答題

 (14分)如圖,拋物線:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0),

1.(1)求拋物線的解析式;

2.(2)如圖1,將拋物線向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線,直線,

    經(jīng)過點(diǎn)D交y軸于點(diǎn)A,交拋物線于點(diǎn)B,拋物線的頂點(diǎn)為P,求△DBP的面積;

3.如圖2,連結(jié)AP,過點(diǎn)B作BC⊥AP于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)至點(diǎn)之間的一動(dòng)點(diǎn),

 連結(jié) 并延長(zhǎng)交于點(diǎn),試問:當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),△BCF的面積為

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市九年級(jí)第一次中考模擬考試數(shù)學(xué)卷 題型:選擇題

(本題滿分12分)如圖,拋物線ya(x1)(x5)x軸的交點(diǎn)為MN.直線ykxb

x軸交于P(2,0),與y軸交于C.若A、B兩點(diǎn)在直線ykxb上,且AO=BO=AOBOD為線段MN的中點(diǎn),OHRt△OPC斜邊上的高.

(1)OH的長(zhǎng)度等于___________;k=___________,b=____________;

(2)是否存在實(shí)數(shù)a,使得拋物線ya(x1)(x5)上有一點(diǎn)E,滿足以D、NE為頂

點(diǎn)的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時(shí)探索所求得的拋物線上是否還有符合條件的E點(diǎn)(簡(jiǎn)要說明理由);并進(jìn)一步探索對(duì)符合條件的每一個(gè)E點(diǎn),直線NE與直線AB的交點(diǎn)G是否總滿足PB·PG,寫出探索過程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案