【題目】如圖,OP平分∠AOB,PA⊥OA、PB⊥OB,垂足分別為A、B,下列結(jié)論成立的是( )
①PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OP
A.①③B.①②③C.②③D.①②③④
【答案】B
【解析】
利用角平分線的性質(zhì)可確定①的正誤;利用HL證明△APO和△PBO全等,即可說明②③正誤;由△APO和△PBO全等,可得OA=OB,結(jié)合OP平分∠AOB,根據(jù)等腰三角形三線合一的性質(zhì),即可判定④的正誤.
解:如圖
由角平分線的性質(zhì)定理可知①正確;
在Rt△APO和Rt△PBO中
OP=OP,PA=PB
∴△APO≌△PBO(HL)
∴∠APO=∠BPO,即PO平分∠APB
OA=OB
說明②③正確;
由OA=OB, OP平分∠AOB,根據(jù)等腰三角形三線合一的性質(zhì)可得: OP垂直平分AB,AB不一定平分OP,故④錯誤;
所以答案為B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,弦于H,過CD延長線上一點(diǎn)E作的切線交AB的延長線于切點(diǎn)為G,連接AG交CD于K.
求證:;
若,試判斷AC與EF的位置關(guān)系,并說明理由;
在的條件下,若,,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):
單層部分的長度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度y(cm) | … | 73 | 72 | 71 | … |
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;
(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度;
(3)設(shè)挎帶的長度為lcm,求l的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=40°,
(1)若點(diǎn)P是∠ABC與∠ACB平分線的交點(diǎn),求∠P的度數(shù);
(2)若點(diǎn)P是∠CBD與∠BCE平分線的交點(diǎn),求∠P的度數(shù);
(3)若點(diǎn)P是∠ABC與∠ACF平分線的交點(diǎn),求∠P的度數(shù);
(4)若∠A=β,求(1)(2)(3)中∠P的度數(shù)(用含β的代數(shù)式表示,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6 cm的等邊三角形,動點(diǎn)P從A出發(fā),以3 cm/s的速度,沿A-B-C向C運(yùn)動,同時,動點(diǎn)Q從C出發(fā)沿CA方向以1 cm/s的速度向A運(yùn)動,當(dāng)其中一點(diǎn)運(yùn)動到終點(diǎn)時,兩點(diǎn)同時停止運(yùn)動.設(shè)運(yùn)動時間為t秒,當(dāng)t= ____s,△APQ是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中,裝有紅球、白球、黃球共12個,這些球除顏色外完全相同,
從中隨機(jī)摸出一個球,則:
(1)若盒子中有紅球3個,則摸到紅球的概率為_________;
(2)若摸到黃球的概率為,則該盒子中裝有黃球的個數(shù)是__________個;
(3)若將這12個球分別標(biāo)上1至12這十二個數(shù)字,則摸到的數(shù)字是0的概率為________;摸到的數(shù)字是偶數(shù)的概率為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在街頭巷尾會遇到一類“摸球游戲”,攤主把分別標(biāo)有數(shù)字1,2,3的3個白球和標(biāo)有數(shù)字4,5,6的3個黑球放在口袋里球除顏色外,其他均相同,讓你摸球規(guī)定:每付3元錢就玩一局,每局連續(xù)摸兩次,每次只能摸一個,第一次摸完后把球放回口袋里攪勻后再摸一次,若前后兩次摸得的都是白球,攤主就送你10元錢的獎品.
用列表法或樹狀圖表示摸出的兩個球可能出現(xiàn)的所有結(jié)果;
求獲獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com