【題目】如圖,直線AB∥CD,直線MN與AB,CD分別交于點(diǎn)M,N,ME,NE分別是∠AMN與∠CNM的平分線,NE交AB于點(diǎn)F,過點(diǎn)N作NG⊥EN交AB于點(diǎn)G.
(1)求證:EM∥NG;
(2)連接EG,在GN上取一點(diǎn)H,使∠HEG=∠HGE,作∠FEH的平分線EP交AB于點(diǎn)P,求∠PEG的度數(shù).
【答案】(1)證明見解析;(2)45°.
【解析】
(1)根據(jù)平行線的性質(zhì)以及角平分線得到定義,即可得出∠MEN=90°,再根據(jù)NG⊥EN,即可得到∠MEN+∠ENH=180°,進(jìn)而得到EM∥NG;
(2)先設(shè)∠HEG=x,則∠HGE=∠MEG=x,∠NEH=90°-2x,根據(jù)EP平分∠FEH,可得∠FEH=2(∠PEG+x),再根據(jù)∠FEH+∠HEN=180°,可得方程2(∠PEG+x)+90°-2x=180°,進(jìn)而解得∠PEG.
解:(1)∵AB∥CD,
∴∠AMN+∠CNM=180°,
∵M(jìn)E,NE分別是∠AMN與∠CNM的平分線,
∴∠EMN= ∠AMN,∠ENM=∠MNC,
∴∠EMN+∠ENM=90°,即∠MEN=90°,
又∵NG⊥EN,
∴∠MEN+∠ENH=180°,
∴EM∥NG;
(2)設(shè)∠HEG=x,則∠HGE=∠MEG=x,∠NEH=90°﹣2x,
∵EP平分∠FEH,
∴∠FEH=2∠PEH=2(∠PEG+x),
又∵∠FEH+∠HEN=180°,
∴2(∠PEG+x)+90°﹣2x=180°,
解得∠PEG=45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y= x2﹣ x﹣ 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y= x2﹣ x﹣ 沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩座建筑物的水平距離BC=30m,從A點(diǎn)測得D點(diǎn)的俯角α為30°,測得C點(diǎn)的俯角β為60°,求這兩座建筑物的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB、CE交于O,
(1)寫出∠AOC的對頂角和鄰補(bǔ)角;
(2)寫出∠COF的鄰補(bǔ)角;
(3)寫出∠BOF的鄰補(bǔ)角;
(4)寫出∠AOE的對頂角及其所有的鄰補(bǔ)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).
(1)請寫出圖中∠1的一對同位角,一對內(nèi)錯(cuò)角,一對同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請判斷CE與PF是否平行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對稱的圖形△A1B1C1;
②將△A1B1C1向右平移7個(gè)單位得到△A2B2C2.
(2)回答下列問題:
①△A2B2C2中頂點(diǎn)B2坐標(biāo)為 .
②若P(a,b)為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點(diǎn)E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;寫出一個(gè)滿足條件的m的值,并求此方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com