【題目】已知拋物線軸交于,兩點,與軸交于點.

1)填空: , .

2)如圖1,已知,過點的直線與拋物線交于點、,且點、關(guān)于點對稱,求直線的解析式.

3)如圖2,已知,是第一象限內(nèi)拋物線上一點,作軸于點,若相似,請求出點的橫坐標(biāo).

【答案】1;2)直線;3點的橫坐標(biāo)為

【解析】

1)把,代入解析式即可求出a,b的值;

2)設(shè)直線MNy=kx-,根據(jù)二次函數(shù)聯(lián)立得到一元二次方程,設(shè)交點、的橫坐標(biāo)為x1,x2,根據(jù)對稱性可得x1+x2=5,根據(jù)根與系數(shù)的關(guān)系求解k,即可求解.

3)求出OD,OB,設(shè)Px,),得到HP=x,DH=-1=,根據(jù)相似分兩種情況列出比例式即可求解.

1)把,代入

解得

故答案為:-4;3;

2)設(shè)直線MNy=kx+b,把代入得b=-

∴直線MNy=kx-,

聯(lián)立二次函數(shù)得kx-=

整理得x2-(k+4)x++3=0

設(shè)交點的橫坐標(biāo)為x1,x2,

∵點、關(guān)于點對稱,

x1+x2=5

k+4=5

解得k=1

∴直線;

3)∵D0,1),B3,0

OD=1,OB=3,

設(shè)Px,),

HP=x,DH=-1=,

當(dāng)時,,

解得x=

當(dāng)時,,

解得x=

點的橫坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面ABC如圖2所示,BC=10米,∠ABC=ACB=36°,改建后頂點DBA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全校的科技制作大賽中,王浩同學(xué)用木板制作了一個帶有卡槽的三角形手機(jī)架.如圖所示,卡槽的寬度DF與內(nèi)三角形ABCAB邊長相等.已知AC20cm,BC18cm,∠ACB50°,一塊手機(jī)的最長邊為17cm,王浩同學(xué)能否將此手機(jī)立放入卡槽內(nèi)?請說明你的理由(參考數(shù)據(jù):sin50°≈0.8cos50°≈0.6,tan50°≈1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某次“小學(xué)生書法比賽”的成績情況,隨機(jī)抽取了30名學(xué)生的成績進(jìn)行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:

(1)圖中a的值為   ;

(2)若要繪制該樣本的扇形統(tǒng)計圖,則成績x在“70≤x<80”所對應(yīng)扇形的圓心角度數(shù)為   度;

(3)此次比賽共有300名學(xué)生參加,若將“x80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有   人:

(4)在這些抽查的樣本中,小明的成績?yōu)?2分,若從成績在“50≤x<60”和“90≤x<100”的學(xué)生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是小區(qū)常見的漫步機(jī),從側(cè)面看如圖2,踏板靜止時,踏板連桿與立柱上的線段重合,長為0.2米,當(dāng)踏板連桿繞著點旋轉(zhuǎn)到處時,測得,此時點距離地面的高度0.44米.求:

1)踏板連桿的長.

2)此時點到立柱的距離.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為,且拋物線與直線相交于兩點,且點軸上,點的坐標(biāo)為,連接.

1 , (直接寫出結(jié)果);

2)當(dāng)時,則的取值范圍為 (直接寫出結(jié)果);

3)在直線下方的拋物線上是否存在一點,使得的面積最大?若存在,求出的最大面積及點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

1)求拋物線的解析式.

2)點是拋物線上的一個動點(不與點重合),過點作直線軸于點,交直線于點.當(dāng)時,求點坐標(biāo);

3)如圖所示,設(shè)拋物線與軸交于點,在拋物線的第一象限內(nèi),是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中如圖:

1)畫出將ABC繞點O逆時針旋轉(zhuǎn)90°所得到的,并寫出點的坐標(biāo).

2)畫出將ABC關(guān)于x軸對稱的,并寫出點的坐標(biāo).

3)求在旋轉(zhuǎn)過程中線段OA掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“垃圾分類”越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就“垃圾分類”知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有  人,條形統(tǒng)計圖中的值為  ;

2)扇形統(tǒng)計圖中“了解很少”部分所對應(yīng)扇形的圓心角的度數(shù)為  ;

3)若從對垃圾分類知識達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加垃圾分類知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案