【題目】已知x1=3是關于x的一元二次方程x2-4x+c=0的一個根,則方程的另一個根x2是。
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,AB=AC=AD,∠DAC=∠ABC.
(1)求證:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛小貨車為一家汽車配件批發(fā)部送貨,先向南走了8千米到達“小崗”修理部,又向北走了4.5千米到達“明城”修理部,繼續(xù)向北走了6.5千米到達“中都”修理部,最后又回到批發(fā)部.
(1)請以批發(fā)部為原點,向南為正方向,用1個單位長度表示1千米,在數軸上表示出“小崗”“明城”“中都”三家修理部的位置;
(2)“中都”修理部距“小崗”修理部有多遠?
(3)小貨車一共行駛了多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,東湖隧道的截面由拋物線和長方形構成,長方形的長OA為12cm,寬OB為4cm,隧道頂端D到路面的距離為10cm,建立如圖所示的直角坐標系
(1)求該拋物線的解析式.
(2)一輛貨運汽車載一長方體集裝箱,集裝箱最高處與地面距離為6m,寬為4m,隧道內設雙向行車道,問這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面高度相等,如果燈離地面的高度不超過8.5m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于A(1,0),B(﹣4,0)兩點,
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)設此拋物線與直線y=﹣x在第二象限交于點D,平行于y軸的直線x=m,()與拋物線交于點M,與直線y=﹣x交于點N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請求出m的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等腰直角三角形ABC左側作直線AP,點B關于直線AP的對稱點為D,連結BD、CD,其中CD交直線AP于點E.
(1)依題意補全圖1;
(2)若∠PAB=28°,求∠ACD的度數;
(3)如圖2,若45°<∠PAB <90°,用等式表示線段AB,CE,DE之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y與x+1.5成正比例,且x=2時,y=7.
(1)求y與x之間的函數表達式;
(2)若點P(-2,a)在(1)所得的函數圖象上,求a.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com