【題目】一次函數(shù)圖像經(jīng)過點(4,-1),且與直線平行,求一次函數(shù)解析式和這個函數(shù)圖像與兩坐標軸圍成的三角形的面積.

【答案】這個函數(shù)的解析式為y=x+3;三角形面積為9

【解析】

根據(jù)平行直線的解析式的k值相等求出k值,然后把點的坐標代入函數(shù)表達式進行計算即可求一次函數(shù)解析式;求出與兩坐標軸的交點坐標,然后利用三角形的面積公式列式計算即可得到這個函數(shù)圖像與兩坐標軸圍成的三角形的面積.

1)設(shè)所求一次函數(shù)的解析式為y=kx+b,

∵直線y=kx+b與直線平行,

k=,

∵直線y=kx+b經(jīng)過點(4,-1),又k=,

+b=-1

解得,b=-3

所以這個函數(shù)的解析式為y=x+3;

設(shè)直線y=x+3分別與x軸、y軸交于A、B點,

x=0,則y=3,B0,3),

y=0,x+3=0,

解得x=-6,A-6,0),

所以SABO=OAOB=×3×6=9

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE,點EBC上.過點DDFBC,連接DB.

求證:(1)ABD≌△ACE;

(2)DF=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,已知CEAB,BFAC,垂足分別為E、F,CEBF相交于點D,且AD平分∠BAC.求證:CE=BF

2)如圖2,ADABC的角平分線,AE=ACEFBCACF點,求證:EC平分∠DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠DEFAB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB90°,ACBC,直線,MN經(jīng)過點C,且ADMN于點D,BEMN于點E。

1)當直線MN繞點C旋轉(zhuǎn)到如圖1的位置時,求證:DE=AD+BE

2)當直線MN繞點C旋轉(zhuǎn)到如圖2的位置時,求證:DEADBE

3)當直線MN繞點C旋轉(zhuǎn)到如圖3的位置時,線段DE、ADBE之間又有什么樣的數(shù)量關(guān)系?請你寫出這個數(shù)量關(guān)系,并證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中有 A(-2,1), B(3 1),C(2, 3)三點,請回答下列問題:

(1)在坐標系內(nèi)描出點A, B, C的位置.

(2)畫出關(guān)于直線x=-1對稱的,并寫出各點坐標.

(3)y軸上是否存在點P,使以A,B P三點為頂點的三角形的面積為10?若存在,請直接寫出點P的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,中,.現(xiàn)想利用三角形全等證明,則圖中所添加的輔助線應(yīng)是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某地區(qū)機動機擁有量對道路通行的影響,學校九年級社會實踐小組對2010年~2017年機動車擁有量、車輛經(jīng)過人民路路口和學校門口的堵車次數(shù)進行調(diào)查統(tǒng)計,并繪制成下列統(tǒng)計圖:

根據(jù)統(tǒng)計圖,回答下列問題:

(1)寫出2016年機動車的擁有量,分別計算2010年~2017年在人民路路口和學校門口堵車次數(shù)的平均數(shù).

(2)根據(jù)統(tǒng)計數(shù)據(jù),結(jié)合生活實際,對機動車擁有量與人民路路口和學校門口堵車次數(shù),說說你的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,身高1.6米的小明從距路燈的底部(點O20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.

1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.

2)若路燈(點P)距地面8米,小明從AC時,身影的長度是變長了還是變短了?變長或變短了多少米?

查看答案和解析>>

同步練習冊答案