【題目】隨著社會的發(fā)展,私家車變得越來越普及,使用節(jié)能低油耗汽車,對環(huán)保有著非常積極的意義,某市有關(guān)部門對本市的某一型號的若干輛汽車,進(jìn)行了一項油耗抽樣實驗:即在同一條件下,被抽樣的該型號汽車,在油耗的情況下,所行駛的路程(單位:)進(jìn)行統(tǒng)計分析,結(jié)果如圖所示:
(注:記為,為,為,為,為)
請依據(jù)統(tǒng)計結(jié)果回答以下問題:
(1)試求進(jìn)行該試驗的車輛數(shù);
(2)請補(bǔ)全頻數(shù)分布直方圖;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)k使關(guān)于x的不等式組只有4個整數(shù)解,且使關(guān)于y的分式方程+1=的解為正數(shù),則符合條件的所有整數(shù)k的積為( 。
A.2B.0C.﹣3D.﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象經(jīng)過點(diǎn),作AC⊥x軸于點(diǎn)C.
(1)求k的值;
(2)直線AB:圖象經(jīng)過點(diǎn)交x軸于點(diǎn).橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).線段AB,AC,BC圍成的區(qū)域(不含邊界)為W.
①直線AB經(jīng)過時,直接寫出區(qū)域W內(nèi)的整點(diǎn)個數(shù);
②若區(qū)域W內(nèi)恰有1個整點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店每天的房租、人員工資等固定成本250元,水果進(jìn)價是5元/斤,物價局規(guī)定售價不得高于12元/斤,也不得低于7元/斤,調(diào)查發(fā)現(xiàn)日均銷量y(斤)與售價x(元)滿足一次函數(shù)關(guān)系,圖象如圖.
(1)求日均銷量y(斤)與銷售單價x(元)之間的函數(shù)關(guān)系式,并寫出自變量取值范圍;
(2)設(shè)每天凈利潤為W元,那么定價多少時,可獲得最大凈利潤?最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的直角邊為直徑作交斜邊于點(diǎn),連接并延長交的延長線于點(diǎn),作交于點(diǎn),連接.
(1)求證:
(2)求證:是的切線;
(3)若的半徑為,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的點(diǎn)A,B點(diǎn)分別在x軸,y軸上,與雙曲線y=恰好交于BC的中點(diǎn)E,若OB=2OA,則S△ABO的值為( )
A.6B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日,黨的十九大報告提出“鄉(xiāng)村振興”戰(zhàn)略,之后各地發(fā)展鄉(xiāng)村旅游,某村在2018年3月1日首次舉辦“百花節(jié)”,開園免費(fèi)賞花,于是大批游客涌入該村賞花,吃農(nóng)家飯買土特產(chǎn),平均每人消費(fèi)100元.
(1)據(jù)統(tǒng)計,某個周六早上開園后平均每小時有500人進(jìn)園,兩小時后,平均每小時有100人離園,園區(qū)規(guī)定,當(dāng)園區(qū)內(nèi)游客人數(shù)達(dá)到3000時,將停止進(jìn)園,那么從開園起經(jīng)過多少小時后停止進(jìn)園?
(2)該村對園區(qū)加大建設(shè)和宣傳力度,2019年3月1日,第二屆“百花節(jié)”如期開園,同時規(guī)定進(jìn)園門票費(fèi)為每人60元,受各種因素影響,與2018年同期相比,人數(shù)在20000的基礎(chǔ)上降低了a%,除門票外平均每人消費(fèi)金額增長了a%,園區(qū)總收入增長了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E是對角線BD上一點(diǎn),點(diǎn)Q是AD邊上一點(diǎn),BQ交AE于點(diǎn)P,∠ABQ=∠DAE,點(diǎn)F是AB邊的中點(diǎn).
(1)當(dāng)四邊形ABCD是正方形時,如圖(1).
①若BE=BA,求證:△ABP≌△EBP;
②若BE=4DE,求證:AF2=AQ·AD.
(2)當(dāng)四邊形ABCD是矩形時,如圖(2),連接FQ,FD.若BE=4DE,求證:∠AFQ=∠ADF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是( )
A.①④B.②④C.①②③D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com