【題目】已知:四邊形ABCD中,,AD=CD,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,且BD平分∠ABC,過(guò)點(diǎn)A,垂足為H.

(1)求證:

(2)判斷線(xiàn)段BH,DHBC之間的數(shù)量關(guān)系;并證明.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

1)首先證明△ADC是等邊三角形,再證明∠DAO=CBO=60°,最后根據(jù)三角形內(nèi)角和定理證明∠ADB=ACB;

2)如圖,在HD上截取HE=BH.首先證明△ABH≌△AEH,得出AB=AE,∠AEH=ABH=60°,再證明△ABC≌△AED,得出BC=ED,即可得出結(jié)論.

(1)證明:∵是等邊三角形. ,. BD平分 , . ,∵ , ,

(2)結(jié)論: ;證明:HD上截取 ,如下圖,

,,∵,∴ , , ,∵ ,∴ ,∵ ,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某林場(chǎng)計(jì)劃購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共800株,甲種樹(shù)苗每株24元,乙種樹(shù)苗每株30元,購(gòu)買(mǎi)這兩種樹(shù)苗共用去21000元.求甲、乙兩種樹(shù)苗各購(gòu)買(mǎi)了多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線(xiàn).如圖:一把直尺壓住射線(xiàn)OB,另一把直尺壓住射線(xiàn)OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線(xiàn)OP就是∠BOA的角平分線(xiàn).他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線(xiàn)上

B. 角平分線(xiàn)上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線(xiàn)的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面長(zhǎng)為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車(chē)場(chǎng)地ABCD,在ABBC邊各有一個(gè)2米寬的小門(mén)(不用鐵柵欄).設(shè)矩形ABCD的邊AD長(zhǎng)為x米,AB長(zhǎng)為y米,矩形的面積為S平方米,且xy

1)若所用鐵柵欄的長(zhǎng)為40米,求yx的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

2)在(1)的條件下,求Sx的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場(chǎng)地的面積為192平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過(guò)邊長(zhǎng)為2的正方形OABC的頂點(diǎn)B,如圖,直線(xiàn)()的圖象交于點(diǎn)D(點(diǎn)D在直線(xiàn)BC的上方),與x軸交于點(diǎn)E .

(1)k的值;

(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).()的圖象在點(diǎn)B,D之間的部分與線(xiàn)段AB,AEDE圍成的區(qū)域(不含邊界)W.

①當(dāng)時(shí),直接寫(xiě)出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);

②若區(qū)域W內(nèi)恰有3個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為2cmP的圓心在射線(xiàn)OA上,且與點(diǎn)O的距離為6cm,如果P1cm/s的速度沿直線(xiàn)ABAB的方向移動(dòng),那么P與直線(xiàn)CD相切時(shí)P運(yùn)動(dòng)的時(shí)間是(

A.3秒或10B.3秒或8C.2秒或8D.2秒或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA、PB與⊙O相切,切點(diǎn)分別為A、BPA3,∠P60°,若AC為⊙O的直徑,則圖中△OBC的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)互聯(lián)網(wǎng)發(fā)展走到了世界的前列,尤其是電子商務(wù),據(jù)市場(chǎng)調(diào)查,天貓超市在銷(xiāo)售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示:

1)當(dāng)銷(xiāo)售單價(jià)定為50元時(shí),求每月的銷(xiāo)售件數(shù);

2)設(shè)每月獲得的利潤(rùn)為W(元),求利潤(rùn)的最大值;

3)由于市場(chǎng)競(jìng)爭(zhēng)激烈,這種護(hù)眼燈的銷(xiāo)售單價(jià)不得高于75元,如果要每月獲得的利潤(rùn)不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形ABCD中,∠A120°,點(diǎn)EBC邊的中點(diǎn),點(diǎn)P是對(duì)角線(xiàn)BD上一動(dòng)點(diǎn),設(shè)PD的長(zhǎng)度為x,PEPC的長(zhǎng)度和為y,圖2y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為( 。

A.7B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案