甲、乙二人騎自行車同時從張莊出發(fā),沿同一路線去李莊.甲行駛20分鐘因事耽誤一會兒,事后繼續(xù)按原速行駛.如圖表示甲、乙二人騎自行車行駛的路程y(千米)隨時間x(分)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)乙比甲晚多長時間到達李莊?
(2)甲因事耽誤了多長時間?
(3)x為何值時,乙行駛的路程比甲行駛的路程多1千米?
(1)設直線OD解析式為y=k1x(k1≠0),
由題意可得60k1=10,k1=
1
6
,y=
1
6
x

當y=15時,15=
1
6
x
,x=90,90-80=10分
故乙比甲晚10分鐘到達李莊.
(2)設直線BC解析式為y=k2x+b(k2≠0),
由題意可得
60k2+b=10
80k2+b=15

解得
k=
1
4
b=-5
∴y=
1
4
x-5
由圖象可知甲20分鐘行駛的路程為5千米,
1
4
x-5=5,x=40,40-20=20分
故甲因事耽誤了20分鐘.
(3)分兩種情況:
1
6
x-5=1
,解得:x=36
1
6
x-(
1
4
x-5)=1,解得:x=48
當x為36或48時,乙行駛的路程比甲行駛的路程多1千米.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是一測力器,在不受力的自然狀態(tài)下,測力器彈簧MN為40cm(如圖(1));當被測試者將手掌放在點P處,然后盡力向前推,測力器彈簧MN的長度會隨著受力大小的不同而發(fā)生變化,此時測力器的刻度表的指針所指的數(shù)字就是測試者的作用力;圖(2)是測力器在最大受力極限狀態(tài)時,測力器彈簧MN的最小長度為8cm;圖(3)、圖(4)是兩次測試時,測力器所展現(xiàn)的數(shù)據(jù)狀態(tài);已知測力器彈簧MN的長度y(cm)與受力x(N)之間存在一次函數(shù)關系.
(1)求y與x之間的函數(shù)解析式;
(2)當指針指向300時,MN的長是多少?
(3)求該測力器在設計時所能承受的最大作用力是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線m與x軸、y軸分別交于點B,A,且A,B兩點的坐標分別為A(0,3),B(4,0).
(1)請求出直線m的函數(shù)解析式;
(2)在x軸上是否存在這樣的點C,使△ABC為等腰三角形?請求出點C的坐標(不需要具體過程),并在坐標系中標出點C的大致位置.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,⊙O1經(jīng)過坐標原點O,分別與x軸正半軸、y軸正半軸交于點A、B.
(1)如圖,過點A作⊙O1的切線與y軸交于點C,點O到直線AB的距離為
12
5
,sin∠ABC=
3
5
,求直線AC的解析式;
(2)若⊙O1經(jīng)過點M(2,2),設△BOA的內(nèi)切圓的直徑為d,試判斷d+AB的值是否會發(fā)生變化?如果不變,求出其值;如果變化,求其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:⊙C的圓心C在x軸上,AB是⊙C的直徑,⊙C與y軸交于D、E兩點,且∠ACD=∠FDO.
(1)求證:直線FD是⊙C的切線;
(2)若OC:OA=1:2,DE=4
2
,求直線FD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(4,0),點P是第一象限內(nèi)直線x+y=6上一點,O是坐標原點,
(1)設P(x,y),求△OPA的面積與x的函數(shù)解析式;
(2)當S=10時,求P點的坐標;
(3)在直線x+y=6上求一點P,使△POA是以OA為底邊的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長8cm,底邊BC長10cm,設DG=xcm,DE=ycm,求y關于x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店需要購進一批電視機和洗衣機,根據(jù)市場調(diào)查,決定電視機進貨量不少于洗衣機的進貨量的一半.電視機與洗衣機的進價和售價如表:
類 別電視機洗衣機
進價(元/臺)18001500
售價(元/臺)20001600
計劃購進電視機和洗衣機共100臺,商店最多可籌集資金161 800元.
(1)請你幫助商店算一算有多少種進貨方案?(不考慮除進價之外的其它費用)
(2)哪種進貨方案待商店銷售購進的電視機與洗衣機完畢后獲得利潤最多?并求出最多利潤.(利潤=售價-進價)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知y-4與x成正比例,且x=6時y=-4
(1)求y與x的函數(shù)關系式.
(2)此直線在第一象限上有一個動點P(x,y),在x軸上有一點C(-2,0).這條直線與x軸相交于點A.求△PAC的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案