【題目】已知二次函數y=x2﹣4x+3.
(1)求該二次函數與x軸的交點坐標和頂點;
(2)在所給坐標系中畫出該二次函數的大致圖象,并寫出當y<0時,x的取值范圍.
【答案】(1)二次函數與x軸的交點坐標為(1,0)(3,0),拋物線的頂點坐標為(2,﹣1);
(2)圖見詳解;當y<0時,1<x<3.
【解析】
(1)令y=0,可求出x的值,即為與x軸的交點坐標;將二次函數化為頂點式即可得出頂點坐標
(2)根據與x軸的交點坐標,頂點坐標,與y軸的交點即可畫出圖像,再根據圖像信息即可得出x的取值范圍.
(1)當y=0時,x2﹣4x+3=0,解得x1=1,x2=3,
所以該二次函數與x軸的交點坐標為(1,0)(3,0);
因為y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,
所以拋物線的頂點坐標為(2,﹣1);
(2)函數圖象如圖:
由圖象可知,當y<0時,1<x<3.
科目:初中數學 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經過討論,同學們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是弧AB所對弦AB上一動點,過點P作PC⊥AB交AB于點P,作射線AC交弧AB于點D.已知AB=6cm,PC=1cm,設A,P兩點間的距離為xcm,A,D兩點間的距離為ycm.(當點P與點A重合時,y的值為0)
小平根據學習函數的經驗,分別對函數y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小平的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y與x的幾組對應值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 4.24 | 5.37 | m | 5.82 | 5.88 | 5.92 |
經測量m的值是 (保留一位小數).
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點(x,y),并畫出函數y的圖象;
(3)結合函數圖象,解決問題:當∠PAC=30°,AD的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC、BD交于點O,AD=15,AO=12.動點P以每秒2個單位的速度從點A出發(fā),沿AC向點C勻速運動.同時,動點Q以每秒1個單位的速度從點D出發(fā),沿DB向點B勻速運動.當其中有一點列達終點時,另一點也停止運動,設運動的時間為t秒.
(1)求線段DO的長;
(2)設運動過程中△POQ兩直角邊的和為y,請求出y關于x的函數解析式;
(3)請直接寫出點P在線段OC上,點Q在線段DO上運動時,△POQ面積的最大值,并寫出此時的t值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數,與的部分對應值如下表所示:
… | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 6 | 1 | -2 | -3 | -2 | m | … |
下面有四個論斷:
①拋物線的頂點為;
②;
③關于的方程的解為;
④.
其中,正確的有___________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,P是CB邊上一動點,連接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,設PC的長度為xcm,BQ的長度為ycm.
小青同學根據學習函數的經驗對函數y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小青同學的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y的幾組對應值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補全表格時,相關數據保留一位小數)
m的值約為多少cm;
(2)在平面直角坐標系中,描出以補全后的表格中各組數值所對應的點(x,y),畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:
①當y>2時,寫出對應的x的取值范圍;
②若點P不與B,C兩點重合,是否存在點P,使得BQ=BP?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面內任意一個角的“夾線圓”,給出如下定義:如果一個圓與這個角的兩邊都相切,則稱這個圓為這個角的“夾線圓”.例如:在平面直角坐標系xOy中,以點(1,1)為圓心,1為半徑的圓是x軸與y軸所構成的直角的“夾線圓”.
(1)下列各點中,可以作為x軸與y軸所構成的直角的“夾線圓”的圓心的點是哪些;
A(2,2),B(3,1),C(-1,0),D(1,-1)
(2)若⊙P為y軸和直線 l:所構成的銳角的“夾線圓”,且⊙P的半徑為1,求點P的坐標.
(3)若 ⊙Q為x軸和直線所構成的銳角的“夾線圓”,且⊙Q的半徑,直接寫出點Q橫坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形,點在上,將繞點順時針旋轉至,點,分別為點,旋轉后的對應點,連接,,,與交于點,與交于點.
(1)求證;
(2)直接寫出圖中已經存在的所有等腰直角三角形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com