如圖,∠DAB=∠CAE,請你再補充一個條件 ,使得△ABC∽△ADE.
∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE
解析試題分析:∵∠DAB=∠CAE ∴∠DAE=∠BAC
∴當(dāng)∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE時兩三角形相似.故應(yīng)填為:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE.
考點:相似三角形的判定.
點評:相似三角形的判定:
①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com