【題目】如圖,在中, ,CD是斜邊AB上的高.

(1)證明:

(2)寫出除(1)外的另兩對相似三角形.

(3)AC是哪兩條線段的比例中項?請簡要證明(說明).

【答案】1)證明見解析;(2ABC CBD,ACD CBD;(3ACADAB的等比中項,證明見解析.

【解析】試題分析:(1)求出∠CDA=ACB=90°,根據(jù)有兩個角對應相等的兩三角形相似得出ACD∽△ABC.
2)根據(jù)相似三角形的判定可得出ABC CBDACD CBD;
3)根據(jù)三角形相似得到比例式,由比例式化成等積式即可.

試題解析:(1)證明:∵∠ACB=90°,CDAB
∴∠CDA=ACB=90°,
∵∠A=A,
∴△ACD∽△ABC

(2) ABC CBD,ACD CBD

(3) ACADAB的等比中項,

證明: ∵△ABC∽△ACD

,
AC2=ABAD,
ACAB,AD的比例中項,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若ABCD的周長為22 cmAC,BD相交于點O,AOD的周長比AOB的周長小3 cm,則AB________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,已知點A0,a),B0,b)在y軸上,點 Cm,b)是第四象限內(nèi)一點,且滿足,ABC的面積是56;ACx軸于點D,Ey軸負半軸上的一個動點.

(1)C點坐標;

(2)如圖2,連接DE,DEACD點,EF為∠AED的平分線,交x軸于H點,且∠DFE90°,求證:FD平分∠ADO;

(3)如圖3,Ey軸負半軸上運動時,連EC,點PAC延長線上一點,EM平分 AEC,且PMEMM點,PNx軸于N點,PQ平分∠APN,交x軸于Q點,則E在運動過程中,的大小是否發(fā)生變化,若不變,求出其值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在購買某場足球門票時,設購買門票數(shù)為x(張),費用為y(元).現(xiàn)有兩種購買方案:

方案一:若單位費助廣告費10000元,則該單位所購門票的價格為每張60元;(總費用=廣告贊助費+門票費)

方案二:購買門票方式如圖所示.

解答下列問題:

1)方案一中,yx的函數(shù)關系式為 ;

方案二中,當0x100時,yx的函數(shù)關系式為 ;

x100時,yx的函數(shù)關系式為 ;

2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最省?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A1,a)是直線y1=2x與雙曲線y2=在第一象限的交點.

1)求雙曲線的解析式;

2)直接寫出當y1y2時,自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD,AB4,BC

1)直接寫出:ABD______度;

2)將矩形ABCD沿BD剪開得到兩個三角形,按圖2擺放:點A與點C重合,CD落在AD′上,直接寫出BDB′D′的關系:_____;

3)在圖2的基礎上將AB′D′向左平移,點B′B重合停止,設ACx,兩個三角形重合部分的封閉圖形的周長為y,請用x表示y____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段相交于,連結(jié)、,我們把形如圖的圖形稱之為字形,如圖,在圖的條件下,的平分線相交于點,并且與分別相交于、,試解答下列問題:

(1)在圖中,請直接寫出、之間的數(shù)量關系:__________

(2)仔細觀察,在圖字形的個數(shù):______個;

(3)中,當度,度時,求的度數(shù).

(4)為任意角時,其它條件不變,試問、之間存在著怎樣的數(shù)量關系?(直接寫出結(jié)果,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC,EC分別為正方形ABCD和正方形EFCG的對角線,點E在ABC內(nèi),連接BF,CAE+CBE=90°

1求證:CAE∽△CBF;

2若BE=1,AE=2,求CE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OFON交于點B、點C,連接AB、PB

1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關系;

2)如圖2,當PQ兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3,MON=60°,連接AP,設=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明AOB≌△PQB即可解決問題;

2)存在.證明方法類似(1);

3)連接BQ.只要證明ABP∽△OBQ,即可推出=,由AOB=30°,推出當BAOM時, 的值最小,最小值為0.5,由此即可解決問題;

試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ

BC垂直平分OQBO=BQ,∴∠BOQ=∠BQOOF平分MON,∴∠AOB=∠BQO,OA=PQ,∴△AOB≌△PQB,AB=PB

2)存在,理由:如圖2中,連接BQ

BC垂直平分OQ,BO=BQ,∴∠BOQ=∠BQO,OF平分MON,BOQ=∠FON∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,OA=PQ∴△AOB≌△PQB,AB=PB

3)連接BQ

易證ABO≌△PBQ∴∠OAB=BPQ,AB=PB∵∠OPB+BPQ=180°,∴∠OAB+OPB=180°,AOP+ABP=180°,∵∠MON=60°,∴∠ABP=120°BA=BP,∴∠BAP=BPA=30°,BO=BQ∴∠BOQ=BQO=30°,∴△ABP∽△OBQ, =∵∠AOB=30°,BAOM時, 的值最小,最小值為0.5,k=0.5

點睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考?碱}型.

型】解答
結(jié)束】
28

【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PEx軸,垂足為E,交直線l于點F.

(1)試求該拋物線表達式;

(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標;

(3)如圖(2),過點P作PHy軸,垂足為H,連接AC.

求證:ACD是直角三角形;

試問當P點橫坐標為何值時,使得以點P、C、H為頂點的三角形與ACD相似?

查看答案和解析>>

同步練習冊答案