【題目】為了適合不同人群的口味,某商店對(duì)蘋果味、草莓味、牛奶味的糖果混合組裝成甲、乙兩種袋裝進(jìn)行銷售.甲種每袋裝有蘋果味、草莓味、牛奶味的糖果各10顆,乙種每袋裝有蘋果味糖果20顆,草莓味和牛奶味糖果各5.甲、乙兩種袋裝糖果每袋成本價(jià)分別是袋中各類糖果成本之和.已知每顆蘋果味的糖果成本價(jià)為0.4元,甲種袋裝糖果的售價(jià)為23.4元,利潤(rùn)率為30%,乙種袋裝糖果每袋的利潤(rùn)率為20%.若這兩種袋裝的銷售利潤(rùn)率達(dá)到24%,則該公司銷售甲、乙兩種袋裝糖果的數(shù)量之比是__________.

【答案】5:9

【解析】

根據(jù)題意,先求出1顆草莓味和1顆牛奶味糖果的成本之和,然后求出乙種糖果的成本價(jià),然后設(shè)甲種糖果x袋,乙種糖果y袋,通過利潤(rùn)的關(guān)系,列出方程,解方程,即可求出甲、乙兩種糖果數(shù)量之比.

解:設(shè)1顆草莓味糖果m元,1顆牛奶味糖果n元,則,

,

解得:,

∴甲種糖果的成本價(jià):

∴乙種糖果的成本價(jià):元,

設(shè)甲種糖果有x袋,乙種糖果有y袋,則,

解得:;

∴該公司銷售甲、乙兩種袋裝糖果的數(shù)量之比是.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小芳家的落地窗(線段DE)與公路(直線PQ)互相平行,她每天做完作業(yè)后都會(huì)在點(diǎn)A處向窗外的公路望去.

1)請(qǐng)?jiān)趫D中畫出小芳能看到的那段公路并記為BC

2)小芳很想知道點(diǎn)A與公路之間的距離,于是她想到了一個(gè)辦法.她測(cè)出了鄰家小彬在公路BC段上走過的時(shí)間為10秒,又測(cè)量了點(diǎn)A到窗的距離是4米,且窗DE的長(zhǎng)為3米,若小彬步行的平均速度為1.2/秒,請(qǐng)你幫助小芳計(jì)算出點(diǎn)A到公路的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于的一元二次方程是整數(shù)).

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根分別為,(其中),設(shè),則是否為變量的函數(shù)?如果是,求出函數(shù)的解析式;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的體育達(dá)標(biāo)情況,隨機(jī)抽取名九年級(jí)學(xué)生進(jìn)行體育達(dá)標(biāo)項(xiàng)目測(cè)試,測(cè)試成績(jī)?nèi)缦卤,?qǐng)根據(jù)表中的信息,解答下列問題:

測(cè)試成績(jī)(分)

人數(shù)(人)

1)該校九年級(jí)有名學(xué)生,估計(jì)體育測(cè)試成績(jī)?yōu)?/span>分的學(xué)生人數(shù);

2)該校體育老師要對(duì)本次抽測(cè)成績(jī)?yōu)?/span>分的甲、乙、丙、丁名學(xué)生進(jìn)行分組強(qiáng)化訓(xùn)練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹狀圖方法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形ABCD中,以B為坐標(biāo)原點(diǎn)建立如圖所示直角坐標(biāo)系,ABACAB=3,AD=5,點(diǎn)P在邊AD上運(yùn)動(dòng)(點(diǎn)P不與A重合,但可以與D點(diǎn)重合),以P為圓心,PA為半徑的⊙P與對(duì)角線AC交于AE兩點(diǎn).

1 直接寫出點(diǎn)A的坐標(biāo)(____,____)設(shè)APx,直接寫出P點(diǎn)坐標(biāo)(_______,______)(用含x的代數(shù)式表示)

2)當(dāng)⊙P與邊CD相切于點(diǎn)F時(shí),求P點(diǎn)的坐標(biāo);

3)隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化,直接寫出公共點(diǎn)的個(gè)數(shù)與相對(duì)應(yīng)的AP的取值之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中(BC>AB),過AAFBC,垂足為F,過CCHAB,垂足為H,交AFG,點(diǎn)EFC上一點(diǎn),且GEED

1)若FC=2BF=4,AB=,求平行四邊形ABCD的面積.

2 AF=FC,FBE中點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年北疆承辦了世界園藝博覽會(huì),某商店為了抓住博覽會(huì)的商機(jī),決定購(gòu)買A.B兩種世園會(huì)紀(jì)念品,若購(gòu)進(jìn)A中紀(jì)念品20件,B種紀(jì)念品10件,需要2000元;若購(gòu)進(jìn)A中紀(jì)念品8件,B種紀(jì)念品6件,需要1100元.

(1)求購(gòu)進(jìn)A.B兩種紀(jì)念品每件各需要多少元?

(2)若該商店決定拿出10000元全部用來購(gòu)進(jìn)這兩種紀(jì)念品,考慮到市場(chǎng)需求,要求購(gòu)進(jìn)A種紀(jì)念品的數(shù)量不少于B種的6倍,且少于B種紀(jì)念品數(shù)量的8倍,設(shè)購(gòu)進(jìn)B種紀(jì)念品a件,則該商店共有幾種進(jìn)貨方案?

(3)在第(2)問的條件下,若銷售每件A種紀(jì)念品可獲利潤(rùn)30元,每件B種紀(jì)念品可獲利潤(rùn)40元,設(shè)總利潤(rùn)為y元,請(qǐng)寫出總利潤(rùn)y(元)與a(個(gè))的函數(shù)關(guān)系式,并根據(jù)函數(shù)關(guān)系式說明總利潤(rùn)最高時(shí)的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所示)面積的方法,現(xiàn)有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直線垂直平分線段AB).

(1)在圖1中,請(qǐng)你畫出用T形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫畫法);

(2)如圖2,小華說:我只用一根直棒和一個(gè)卷尺就可以求出環(huán)形花壇的面積,具體做法如下:

將直棒放置到與小圓相切,用卷尺量出此時(shí)直棒與大圓兩交點(diǎn)M,N之間的距離,就可求出環(huán)形花壇的面積如果測(cè)得MN=10m,請(qǐng)你求出這個(gè)環(huán)形花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BE,CD分別是邊AC、AB上的中線,BECD相交于點(diǎn)O,BE6,則OE_____

查看答案和解析>>

同步練習(xí)冊(cè)答案