對于數(shù)x、y,定義一種新的運算*,x*y=ax+by,其中a,b為常數(shù),等式的右邊是通常的加法與乘法運算.已知3*5=15,4*7=28,則1*1=______.
∵x*y=ax+by,且3*5=15,4*7=28,
3a+5b=15
4a+7b=28
,
(1)×4-(2)×3,得
b=24
a=-35

∴1*1=a+b=-35+24=-11.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

對于數(shù)x、y,定義一種新的運算*,x*y=ax+by,其中a,b為常數(shù),等式的右邊是通常的加法與乘法運算.已知3*5=15,4*7=28,則1*1=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在實數(shù)范圍內(nèi),方程x2=-1無解,為使開方運算在負數(shù)范圍內(nèi)可以進行,我們規(guī)定i2=-1.定義一種新數(shù):Z=a+bi({a、b為實數(shù)}),并規(guī)定實數(shù)范圍內(nèi)的所有運算法則對于新數(shù)Z=a+bi?({a、b為實數(shù)});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若Z=-
1
2
+
3
2
i
,則Z2=(-
1
2
+
3
2
i)2=(-
1
2
)2+2(-
1
2
)(
3
2
i)+(
3
2
i)2=-
1
2
-
3
2
i
,依據(jù)上述規(guī)定,
(1)若Z=-
1
2
+
3
2
i
,試求Z3的值;
(2)若Z=-
1
2
+
3
2
i
,試求z2008的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

對于數(shù)x、y,定義一種新的運算*,x*y=ax+by,其中a,b為常數(shù),等式的右邊是通常的加法與乘法運算.已知3*5=15,4*7=28,則1*1=________.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國初中數(shù)學競賽(湖南省衡陽市)九年級試卷(解析版) 題型:填空題

對于數(shù)x、y,定義一種新的運算*,x*y=ax+by,其中a,b為常數(shù),等式的右邊是通常的加法與乘法運算.已知3*5=15,4*7=28,則1*1=   

查看答案和解析>>

同步練習冊答案