【題目】如圖①,在矩形中,已知,點(diǎn)邊上一點(diǎn),滿足,動(dòng)點(diǎn)的速度沿線段從點(diǎn)移動(dòng)到點(diǎn),連接,作,交線段于點(diǎn),設(shè)點(diǎn)移動(dòng)的時(shí)間為,的長度為的函數(shù)關(guān)系如圖②所示.

1)圖①中,_______,圖②中,_______;

2)點(diǎn)能否為線段的中點(diǎn)?若可能,求出此時(shí)的值,若不可能,請說明理由;

3)在圖①中,連接、,設(shè)交于點(diǎn),若平分的面積,求此時(shí)的值.

【答案】12,2;(2不能為中點(diǎn);理由見解析;(3.

【解析】

1)可直接求出CG的長,證明,當(dāng)t=6時(shí),BE=6,即可求CF得長;

2)由,得到,即,整理得,

由當(dāng)時(shí),,即可得出結(jié)論;

3)過,如圖,先證,可得,,再證,列方程求解即可.

解:(1)圖①中,

CG=BC-AB=2,

∵∠B=C,AEB=EFC,

,

,

∴當(dāng)t=6時(shí),BE=6,

CF=2;

(2)∵

∴則

∵當(dāng)時(shí),

不能為中點(diǎn)

(3)過,如圖,

平分的面積

中點(diǎn)

中,

化簡得

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).

1)求二次函數(shù)表達(dá)式;

2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);

3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)軸的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,AC平分∠DAB,∠DAB60°,∠B與∠D互補(bǔ),AC4,CD3,則ABAD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,∠ABC90°,ABBC2,現(xiàn)將RtABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△AED,則圖中陰影部分的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,則的內(nèi)切圓與外接圓的周長之比為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的弦,點(diǎn)CO上,且,聯(lián)結(jié)AO,CO,并延長CO交弦AB于點(diǎn)D,AB4,CD6

1)求∠OAB的大。

2)若點(diǎn)EO上,BEAO,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;

(2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視舉辦的《主持人大賽》受到廣泛的關(guān)注.某中學(xué)學(xué)生會(huì)就《主持人大賽》節(jié)目的喜愛程度,在校內(nèi)對部分學(xué)生進(jìn)行了問卷調(diào)查,并對問卷調(diào)查的結(jié)果分為“非常喜歡”、“比較喜歡”、“感覺一般”、“不太喜歡”四個(gè)等級,分別記作、、.根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:

1)本次被調(diào)查對象共有 人;扇形統(tǒng)計(jì)圖中被調(diào)查者比較喜歡等級所對應(yīng)圓心角的度數(shù)為 .

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并標(biāo)明數(shù)據(jù);

3)若選“不太喜歡”的人中有兩個(gè)女生和兩個(gè)男生,從選“不太喜歡”的人中挑選兩個(gè)學(xué)生了解不太喜歡的原因,請用列舉法(畫樹狀圖或列表),求所選取的這兩名學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一個(gè)大小形狀固定的不等邊銳角三角形紙,剪出一個(gè)最大的正方形紙備用.甲同學(xué)說:當(dāng)正方形的一邊在最長邊時(shí),剪出的內(nèi)接正方形最大;乙同學(xué)說:當(dāng)正方形的一邊在最短邊上時(shí),剪出的內(nèi)接正方形最大;丙同學(xué)說:不確定,剪不出這樣的正方形紙.你認(rèn)為誰說的有道理,請證明.(假設(shè)圖中△ABC的三邊ab,c,且abc,三邊上的高分別記為hahb,hc

查看答案和解析>>

同步練習(xí)冊答案