【題目】已知,點(diǎn)M是二次函數(shù)y=ax2(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0, ),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個圓上,圓心Q的縱坐標(biāo)為 .
(1)求a的值;
(2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時,求點(diǎn)M和點(diǎn)Q的坐標(biāo);
(3)當(dāng)點(diǎn)M在第一象限時,過點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.
【答案】
(1)
解:∵圓心O的縱坐標(biāo)為 ,
∴設(shè)Q(m, ),F(xiàn)(0, ),
∵QO=QF,
∴m2+( )2=m2+( ﹣ )2,
∴a=1,
∴拋物線為y=x2
(2)
解:∵M(jìn)在拋物線上,設(shè)M(t,t2),Q(m, ),
∵O、Q、M在同一直線上,
∴KOM=KOQ,
∴ = ,
∴m= ,
∵QO=QM,
∴m2+( )2=(m﹣t)2=( ﹣t2)2,
整理得到:﹣ t2+t4+t2﹣2mt=0,
∴4t4+3t2﹣1=0,
∴(t2+1)(4t2﹣1)=0,
∴t1= ,t2=﹣ ,
當(dāng)t1= 時,m1= ,
當(dāng)t2=﹣ 時,m2=﹣ .
∴M1( , ),Q1( , ),M2(﹣ , ),Q2(﹣ , )
(3)
解:設(shè)M(n,n2)(n>0),
∴N(n,0),F(xiàn)(0, ),
∴MF= =n2+ ,MN+OF=n2+ ,
∴MF=MN+OF.
【解析】(1)設(shè)Q(m, ),F(xiàn)(0, ),根據(jù)QO=QF列出方程即可解決問題.(2)設(shè)M(t,t2),Q(m, ),根據(jù)KOM=KOQ , 求出t、m的關(guān)系,根據(jù)QO=QM列出方程即可解決問題.(3)設(shè)M(n,n2)(n>0),則N(n,0),F(xiàn)(0, ),利用勾股定理求出MF即可解決問題.本題考查二次函數(shù)的應(yīng)用、三點(diǎn)共線的條件、勾股定理等知識,解題的關(guān)鍵是設(shè)參數(shù)解決問題,把問題轉(zhuǎn)化為方程解決,屬于中考常考題型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中有兩種移動電話計(jì)費(fèi)方式.
月使用費(fèi)元 | 主叫限定時間 | 主叫超時費(fèi) | 被叫 | |
方式一 | 49 | 100 | 免費(fèi) | |
方式二 | 69 | 150 | 免費(fèi) |
設(shè)一個月內(nèi)主叫通話為t分鐘是正整數(shù).
當(dāng)時,按方式一計(jì)費(fèi)為______元;按方式二計(jì)費(fèi)為______元;
當(dāng)時,是否存在某一時間t,使兩種計(jì)費(fèi)方式相等,若存在,請求出對應(yīng)t的值,若不存在,請說明理由;
當(dāng)時,請直接寫出省錢的計(jì)費(fèi)方式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為16,點(diǎn)D是BC邊上一點(diǎn),且BD= BC,點(diǎn)G是AB上一點(diǎn),點(diǎn)H在△ABC內(nèi)部,且四邊形BDHG是平行四邊形,則圖中陰影部分的面積是( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y= (a>0,a為常數(shù))和y= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y= 的圖象上,MC⊥x軸于點(diǎn)C,交y= 的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y= 的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y= 的圖象上運(yùn)動時,以下結(jié)論:
①S△ODB=S△OCA;
②四邊形OAMB的面積不變;
③當(dāng)點(diǎn)A是MC的中點(diǎn)時,則點(diǎn)B是MD的中點(diǎn).
其中正確結(jié)論的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C都是格點(diǎn).
(1)將△ABC向左平移6個單位長度得到△A 1B 1C 1,請?jiān)诰W(wǎng)格中畫出△A 1B 1C 1
(2)將△ABC繞點(diǎn)O按逆時針方向旋轉(zhuǎn)180°得到△A 2B 2C 2,請?jiān)诰W(wǎng)格畫出△A 2B 2C 2.
(3)請問△A 1B 1C 1與△A 2B 2C 2成中心對稱嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對下列代數(shù)式作出解釋,其中不正確的是( )
A. a-b:今年小明b歲,小明的爸爸a歲,小明比他爸爸。a-b)歲
B. a-b:今年小明b歲,小明的爸爸a歲,則小明出生時,他爸爸為(a-b)歲
C. ab:長方形的長為acm,寬為bcm,長方形的面積為ab
D. ab:三角形的一邊長為acm,這邊上的高為bcm,此三角形的面積為ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于反比例函數(shù),下列說法不正確的是( )
A. 點(diǎn)(-2,-1)在它的圖像上 B. 它的圖像在第一、三象限
C. 當(dāng)時,y隨x的增大而增大 D. 當(dāng)時,y隨x的增大而減小
【答案】C
【解析】試題分析:反比例函數(shù)的性質(zhì):當(dāng)時,圖象在一、三象限,在每一象限,y隨x的增大而減;當(dāng)時,圖象在二、四象限,在每一象限,y隨x的增大而增大.
A.點(diǎn)在它的圖象上,B.它的圖象在第一、三象限,C.當(dāng)時,隨的增大而減小,均正確,不符合題意;
D.當(dāng)時,隨的增大而減小,故錯誤,本選項(xiàng)符合題意.
考點(diǎn):反比例函數(shù)的性質(zhì)
點(diǎn)評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握反比例函數(shù)的性質(zhì),即可完成.
【題型】單選題
【結(jié)束】
8
【題目】如圖,雙曲線(x<0)經(jīng)過平行四邊形ABCO的對角線交點(diǎn)D,已知邊OC在y軸上,且AC⊥AB于點(diǎn)C,則平行四邊形ABCO的面積是( 。
A. B. C. 3 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在正方形ABCD中,點(diǎn)P在邊CD上(不與點(diǎn)C、D重合),連接BP,將△BCP繞點(diǎn)C順時針旋轉(zhuǎn)至△DCE,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)D.旋轉(zhuǎn)的角度是 度.應(yīng)用:將圖①中的BP延長交邊DE于點(diǎn)F,其它條件不變,如圖②,求∠BFE的度數(shù)。拓展:如圖②,若DP=2CP,BC=6,則四邊形ABED的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖□ABCD的對角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=600,AB=BC,連接OE .下列 結(jié)論:①∠CAD=300 ② S□ABCD=ABAC ③ OB=AB ④ OE=BC 成立的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com