分別求拋物線(1)y=x2-3x-4;(2)y=x2+2x+1;(3)y=x2-x+1與x軸交點(diǎn)的個(gè)數(shù).

答案:
解析:

  解 (1)令y=0,則x2-3x-4=0,解得x1=4,x2=-1.所以拋物線與x軸有兩個(gè)交點(diǎn).

  (2)令y=0,則x2+2x+1=0,解得x1=x2=-1.所以拋物線與x軸有一個(gè)交點(diǎn).

  (3)令y=0,則x2-x+1=0,方程無解.所以拋物線與x軸沒有交點(diǎn).

  分析 求圖形與x軸的交點(diǎn),就是令y=0,求x的值.

  說明 拋物線與x軸的交點(diǎn)由b2-4ac決定.當(dāng)b2-4ac>0時(shí),拋物線與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),拋物線與x軸有一個(gè)交點(diǎn),即拋物線的頂點(diǎn);當(dāng)b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為M,與x軸的交點(diǎn)為A、B(點(diǎn)B在點(diǎn)A的右側(cè)),△ABM的三個(gè)內(nèi)角∠M、∠A、∠B所對(duì)的邊分別為m、a、b.若關(guān)于x的一元二次方程(m-a)x2+2bx+(m+a)=0有兩個(gè)相等的實(shí)數(shù)根.
(1)判斷△ABM的形狀,并說明理由.
(2)當(dāng)頂點(diǎn)M的坐標(biāo)為(-2,-1)時(shí),求拋物線的解析式,并畫出該拋物線的大致圖形.
(3)若平行于x軸的直線與拋物線交于C、D兩點(diǎn),以CD為直徑的圓恰好與x軸相切,求該圓的圓心坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,矩形ABCD的邊AD在y軸正半軸上,點(diǎn)A、C的坐標(biāo)分別為(0,1)、(2,4).點(diǎn)P從點(diǎn)A出發(fā),沿A?B?C以每秒1個(gè)單位的速度運(yùn)動(dòng),到點(diǎn)C停止;點(diǎn)Q在x軸上,橫坐標(biāo)為點(diǎn)P的橫、縱坐標(biāo)之和.拋物線y=-
1
4
x2+bx+c
經(jīng)過A、C兩點(diǎn).過點(diǎn)P作x軸的垂線,垂足精英家教網(wǎng)為M,交拋物線于點(diǎn)R.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),△PQR的面積為S(平方單位).
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)分別求t=1和t=4時(shí),點(diǎn)Q的坐標(biāo);
(3)當(dāng)0<t≤5時(shí),求S與t之間的函數(shù)關(guān)系式,并直接寫出S的最大值.
參考公式:拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•澄江縣二模)如圖,已知:直線m分別與x軸、y軸相交于A、B兩點(diǎn),拋物線y=ax2+bx+c經(jīng)過A(3,0)、B(0,3)、C(1,0)三點(diǎn).
(1)求直線m的解析式;
(2)求拋物線的解析式及對(duì)稱軸;
(3)已知D(-1,0)在x軸上.問:在直線m上是否存在一點(diǎn)P使△ABO與△ADP相似?若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(m+1)x+m,根據(jù)下列條件,分別求出m的值.
(1)若拋物線過原點(diǎn);
(2)若拋物線的頂點(diǎn)在x軸上;
(3)若拋物線的對(duì)稱軸為直線x=2;
(4)若拋物線在x軸上截得的線段長為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案