【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于C、D兩點(diǎn), C點(diǎn)的坐標(biāo)是(4,-1),D點(diǎn)的橫坐標(biāo)為-2.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值小于反比例函數(shù)的值?
【答案】(1)y=-0.5x+1,y=;(2)-2<x<0或x>4.
【解析】
(1)先把C點(diǎn)坐標(biāo)代入反比例函數(shù)求出m,再根據(jù)D坐標(biāo)的橫坐標(biāo)為-2求出D點(diǎn)坐標(biāo),再把C,D坐標(biāo)代入一次函數(shù)求出k,b的值;
(2)根據(jù)C,D兩點(diǎn)的橫坐標(biāo),結(jié)合圖像即可求解.
(1)把C(4,-1)代入反比例函數(shù),得m=4×(-1)=-4,
∴y=;
設(shè)D(-2,y),代入y=得y=-2,
∴D(-2,2)
把C(4,-1), D(-2,2)代入一次函數(shù)
得
解得k=-0.5,b=1
∴y=-0.5x+1
(2)∵C,D兩點(diǎn)的橫坐標(biāo)分別為4,-2,
由圖像可知當(dāng)-2<x<0或x>4,一次函數(shù)的值小于反比例函數(shù)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠BAD的角平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,連接DE.
(1)求證:DA=DF;
(2)若∠ADE=∠CDE=30°,DE=2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別標(biāo)有數(shù)字1,2,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)寫(xiě)出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)小明、小華各取一次,由取出小球所確定的數(shù)字作為點(diǎn)的坐標(biāo),這樣的點(diǎn)(x,y)中落在反比例函數(shù)y=的圖象上的點(diǎn)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫(xiě)出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲(chóng)在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),它從A處出發(fā)去看望B、C、D處的其它甲蟲(chóng),規(guī)定:向上向右走為正,向下向左走為負(fù).例如從A到B記為:A →B(+1,+3),從B到A記為:B→A(﹣1,-3),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)圖中A →C(______,______),B →C(______,______),C→_______(+1,﹣2);
(2)若這只甲蟲(chóng)的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲(chóng)走過(guò)的路程;
(3)從A處去P處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請(qǐng)?jiān)趫D中標(biāo)出P的位置;
(4)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地果園分別有橘子40噸和60噸,C、D兩地分別需要橘子30噸和70噸;已知從A、B到C、D的運(yùn)價(jià)如表:
到C地 | 到D地 | |
A果園 | 每噸15元 | 每噸12元 |
B果園 | 每噸10元 | 每噸9元 |
(1)若從A果園運(yùn)到C地的橘子為x噸,則從A果園運(yùn)到D地的橘子為 噸,從A果園將橘子運(yùn)往D地的運(yùn)輸費(fèi)用為 元.
(2)用含x的式子表示出總運(yùn)輸費(fèi)(要求:列式、化簡(jiǎn))
(3)若這批橘子在C地和D地進(jìn)行再加工,經(jīng)測(cè)算,全部橘子加工完畢后總成本為w元,且.則當(dāng)x= 時(shí),w有最 值(填“大”或“小”),這個(gè)值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)決定在學(xué)生中開(kāi)展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 學(xué)生數(shù)(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)m= ,n= ,p= ;
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用火柴棒按下列方式搭建三角形:
(1)填表:
三角形個(gè)數(shù) | 1 | 2 | 3 | 4 | … |
火柴棒根數(shù) | … |
(2)當(dāng)三角形的個(gè)數(shù)為時(shí),火柴棒的根數(shù)是多少?
(3)求當(dāng)時(shí),有多少根火柴棒?
(4)當(dāng)火柴棒的根數(shù)為2017時(shí),三角形的個(gè)數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
解答“已知x﹣y=2,且x>1,y<0,試確定x+y的取值范圍”有如下解法
解:∵x﹣y=2,∴x=y+2 又∵x>1∴y+2>1∴y>﹣1
又∵y<0∴﹣1<y<0…①
同理可得1<x<2…②
由①+②得:﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2
按照上述方法,完成下列問(wèn)題:
(1)已知x﹣y=3,且x>2,y<1,則x+y的取值范圍是
(2)已知關(guān)于x,y的方程組的解都是正數(shù)
①求a的取值范圍;②若a﹣b=4,求a+b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com