【題目】如圖,等邊ABC內(nèi)接于⊙O,P是弧AB上任一點(點P不與點AB重合),連接APBP,過點CCMBPPA的延長線于點M

1)求∠APC的度數(shù).

2)求證:PCM為等邊三角形.

3)若PA1PB3,求PCM的面積.

【答案】1)∠APC60°;(2)見解析;(3SPCM=4

【解析】

1)利用同弧所對的圓周角相等即可求得題目中的未知角;
2)利用同弧所對的圓周角相等即可求得題目中的未知角,進而判定PCM為等邊三角形;
2)利用上題中得到的相等的角和等邊三角形中相等的線段證得兩三角形全等,進而利用PCM為等邊三角形,進而求得PH的長,利用三角形的面積公式計算即可.

1)∵△ABC是等邊三角形,

∴∠ABC60°,

∴∠APC=∠ABC60°;

2)∵∠BPC=∠BAC60°

CMBP,

∴∠PCM=∠BPC60°,

又由(1)得∠APC60°,

PCM為等邊三角形;

3)解:∵△ABC是等邊三角形,PCM為等邊三角形,

∴∠PCA+ACM=∠BCP+PCA,

∴∠BCP=∠ACM

BCPACM中,

∴△BCP≌△ACMSAS),

CMCP,AMBP3,

CMPM1+34,

PHCMH,

RtPMH中,∠PMH60°PM4,

PH2

SPCMPHCM×4×24

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l與直線,直線分別交于點A,B,直線與直線交于點

1)求直線軸的交點坐標;

2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為

時,結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點個數(shù);

若區(qū)域內(nèi)沒有整點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+2ax+c的圖象與x軸交于AB兩點(點A在點B的左邊)AB4,與y軸交于點C,OCOA,點D為拋物線的頂點.

1)求拋物線的解析式;

2)點Mm0)為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQAB交拋物線于點Q,過點QQNx軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ,過拋物線上一點Fy軸的平行線,與直線AC交于點G(G在點F的上方),FG=DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACO的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD16cm,AE4cm

1)求O的半徑;

2)求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,與軸交于點,且

(1)求拋物線的解析式和頂點的坐標;

(2)判斷的形狀,證明你的結(jié)論;

(3)點軸上的一個動點,當的周長最小時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的頂點,,規(guī)定把正方形ABCD先沿x軸翻折,再向左平移1個單位長度為一次變換,如此這樣,連續(xù)經(jīng)過2019次變換后,正方形ABCD的對角線的交點M的坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O ,則BC邊的長為_

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當售價為每條80元時,每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降1元,則每月可多銷售5條.設(shè)每條褲子的售價為(為正整數(shù)),每月的銷售量為條.

(1)直接寫出的函數(shù)關(guān)系式;

(2)設(shè)該網(wǎng)店每月獲得的利潤為元,當銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學生.為了保證捐款后每月利潤不低于4220元,且讓消費者得到最大的實惠,該如何確定休閑褲的銷售單價?

查看答案和解析>>

同步練習冊答案