【題目】如圖,ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)FDEBC,分別交AB、AC于點(diǎn)D、E,那么下列結(jié)論:①BDFCEF都是等腰三角形;②FDE中點(diǎn);③ADE的周長等于ABAC的和;④BFCF.其中正確的有( 。

A.①③B.①②③C.①②D.①④

【答案】A

【解析】

由平行線得到角相等,由角平分線得角相等,根據(jù)平行線的性質(zhì)及等腰三角形的判定和性質(zhì)逐項(xiàng)分析可得解.

DEBC,

∴∠DFB=∠FBC,∠EFC=∠FCB,

∵△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,

∴∠DBF=∠FBC,∠ECF=∠FCB,

∴∠DBF=∠DFB,∠ECF=∠EFC

DBDF,EFEC,

即△BDF和△CEF都是等腰三角形;

故①正確;

BDCE無法判定相等,

DFEF無法判定相等,

故②錯(cuò)誤;

∴△ADE的周長為:AD+DE+AEAB+BD+CE+AEAB+AC;

故③正確;

∵∠ABC不一定等于∠ACB,

∴∠FBC不一定等于∠FCB,

BFCF不一定相等,

故④錯(cuò)誤.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD是它的一條對(duì)角線,過A、C兩點(diǎn)作AEBD,CFBD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。

(1求證:四邊形CMAN是平行四邊形。

(2已知DE=4,F(xiàn)N=3,求BN的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BAD=∠CAD,則下列條件中不一定能使ABD≌△ACD的是(  )

A.B=∠CB.BDA=∠CDAC.ABACD.BDCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(0,4)、(4,0),點(diǎn)C在第一象限內(nèi),∠BAC=90°,AB=2AC,函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,將△ABC沿x軸的正方向向右平移m個(gè)單位長度,使點(diǎn)A恰好落在函數(shù)y=(x>0)的圖象上,則m的值為( 。

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)DBC邊上,點(diǎn)EAB的延長線上,將DED點(diǎn)順時(shí)針旋轉(zhuǎn)120°得到DF

1)如圖1,若點(diǎn)F恰好落在AC邊上,求證:點(diǎn)DBC的中點(diǎn);

2)如圖2,在(1)的條件下,若=45°,連接AD,求證:;

3)如圖3,若,連CF,當(dāng)CF取最小值時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,作RtABC,邊BCx軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若BCE的面積為4,則k=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過動(dòng)點(diǎn)P分別作軸x、y軸的平行線,交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.

(1)求k的值;

(2)用含m的代數(shù)式表示CD的長;

(3)求Sm之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題6分在一次消防演習(xí)中,消防員架起一架25米長的云梯AB,如圖斜靠在一面墻上,梯子底端B離墻角C的距離為7米

1求這個(gè)梯子的頂端距地面的高度AC是多少?

2如果消防員接到命令,按要求將梯子底部在水平方向滑 動(dòng)后停在DE的位置上云梯長度不變,測得BD長為8米,那么云梯的頂部在下滑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E BC 的中點(diǎn),DE 平分∠ADC

(1)如圖 1,若∠B=∠C=90°,求證:AE 平分∠DAB;

(2)如圖 2,若 DEAE,求證:ADAB+CD

查看答案和解析>>

同步練習(xí)冊答案