【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
【答案】或
【解析】
試題由于∠EDF=30°,且DE總垂直于AB,因此∠FDB=60°,此時發(fā)現(xiàn)△FDB是等邊三角形,那么BD=BF,2﹣AD=1﹣CF,即AD=CF+1.由于∠C是直角,當△CEF與△DEF相似時,△DEF必為直角三角形,那么可分兩種情況討論:①∠DEF=90°,此時,△CEF∽△DEF;②∠DFE=90°,此時△CEF∽△FED;可根據(jù)各相似三角形得到的比例線段求出CF的值,進而可求得AD的值.
解:∵∠EDF=30°,ED⊥AB于D,
∴∠FDB=∠B=60°,
∴△BDF是等邊三角形;
∵BC=1,∴AB=2;
∵BD=BF,
∴2﹣AD=1﹣CF;
∴AD=CF+1.
①如圖1,∠FED=90°,△CEF∽△EDF,
∴=,即=,
解得,CF=;
∴AD=+1=;
②如圖2,∠EFD=90°,△CEF∽△FED,
∴=,即=;
解得,CF=;
∴AD=+1=.
故答案為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是盼盼家新裝修的房子,其中三個房間甲、乙、丙.他將一個梯子斜靠在墻上,梯子頂端距離地面的垂直距離記作,如果梯子的底端不動,頂端靠在對面墻上,此時梯子的頂端距離地面的垂直距離記作.
(1)當盼盼在甲房間時,梯子靠在對面墻上,頂端剛好落在對面墻角處,若米,米,則甲房間的寬______米;
(2)當盼盼在乙房間時,測得米,米,且,求乙房間的寬;
(3)當盼盼在丙房間時,測得米,且,.
①求的度數(shù);
②求丙房間的寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的內(nèi)接四邊形ABCD中,AC,BD是它的對角線,AC的中點I是△ABD的內(nèi)心.求證:
(1)OI是△IBD的外接圓的切線;
(2)AB+AD=2BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG⊥CE于G,CG=EG
(1)求證:CD=AE;
(2)若AD=BD,CD=2,則求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點 O ,點 E , F 分別為 OB , OD 的中點,延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當 AB 與 AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與軸交于兩點,與軸交于點.
(1)求的取值范圍;
(2)若,直線經(jīng)過點,與軸交于點,且,求拋物線的解析式;
(3)若點在點左邊,在第一象限內(nèi),(2)中所得到拋物線上是否存在一點,使直線分的面積為兩部分?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2﹣ax﹣2a(a為常數(shù)且不等于0)與x軸的交點為A,B兩點,且A點在B的右側(cè).
(1)當拋物線經(jīng)過點(3,8),求a的值;
(2)求A、B兩點的坐標;
(3)若拋物線的頂點為M,且點M到x軸的距離等于AB的3倍,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加從地到地的長跑比賽,兩人在比賽時所跑的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示,請你根據(jù)圖象,回答下列題:
(1)________(填“甲”或“乙”)先到達終點;甲的速度是________米/分鐘;
(2)求甲與乙相遇時,他們離地多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com