【題目】如圖,拋物線C1:y=mx2﹣2mx﹣3m(m<0)與x軸交于A、B兩點,與y軸交于點D,頂點為M,另一條拋物線C2與x軸也交于A、B兩點,且與y軸的交點是C(0,),頂點是N.
(1)求A,B兩點的坐標.
(2)求拋物線C2的函數表達式.
(3)是否存在m,使得△OBD與△OBC相似?若存在,請求出m的值;若不存在請說明理由.
【答案】(1)A(﹣1,0),B(3,0);(2)y=.(3)m的值為﹣或﹣2.
【解析】
(1)解方程mx2﹣2mx﹣3m=0可得到A,B兩點的坐標;
(2)設交點式y=a(x+1)(x﹣3),然后把C點坐標代入求出a得到拋物線C2的表達式;
(3)分兩種情況考慮:當△OBD∽△OBC或△ODB∽△OBC時,求出OD長,得到m的值.
(1)當y=0時,mx2﹣2mx﹣3m=0,
∵x2﹣2x﹣3=0,
∴x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0);
(2)設拋物線C2的表達式為y=a(x+1)(x﹣3),
把C(0,﹣)代入,得a×1×(-3)=-,
解得a=,
∴拋物線C2的函數表達式為y=(x+1)(x-3),
即y=x2-x-.
(3)當△OBD∽△OBC時,= ,
∴OC=OD,
∴D(0,).
∴ -3m=,
∴m=﹣,
當△ODB∽△OBC時,
=,
∴OD=9,
∴OD=6,
∴D(0,6),
∴﹣3m=6,
∴m=﹣2,
綜合以上可得m的值為﹣或﹣2.
科目:初中數學 來源: 題型:
【題目】某市水產養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數關系為:,日銷售量y(千克)與時間第t(天)之間的函數關系如圖所示:
(1)求日銷售量y與時間t的函數關系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方BC在直線MN上,E是BC上一點,以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并直接寫出∠FCN的度數(不要寫出解答過程)
(3)如圖(2),將圖中正方形ABCD改為矩形ABCD,AB=6,BC=8,E是線段BC上一動點(不含端點B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當點E由B向C運動時,∠FCN的大小是否總保持不變,若∠FCN的大小不變,請求出tan∠FCN的值.若∠FCN的大小發(fā)生改變,請舉例說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖冢埱蟪M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過點、.是線段上一動點(點不與、重合),過點作軸的垂線交拋物線于點,交線段于點.過點作,垂足為點.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]
(1)求該拋物線的解析式;
(2)試求線段的長關于點的橫坐標的函數解析式,并求出的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點.
(1)求該拋物線的解析式;
(2)拋物線的對稱軸上是否存在一點,使的周長最小?若存在,請求出點的坐標,若不存在,請說明理由.
(3)設拋物線上有一個動點,當點在該拋物線上滑動到什么位置時,滿足,并求出此時點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解全區(qū)3000名九年級學生英語聽力口語自動化考試成績的情況,隨機抽取了部分學生的成績(滿分30分且得分均為整數),制成下表:
分數段(x分分) | 0≤x≤18 | 19≤x≤21 | 22≤x≤24 | 25≤x≤27 | 28≤x≤30 |
人數 | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調查共抽取了 名學生;
②學生成績的中位數所在的分數段是 ;
③若用扇形統(tǒng)計圖表示統(tǒng)計結果,則分數段為0≤x≤18的人數所對應扇形的圓心角為 °;
(2)如果將25分以上(含25分)定為優(yōu)秀,請估計全區(qū)九年級考生成績?yōu)閮?yōu)秀的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com