【題目】如圖,C 為線段 AD 上一點,B 為 CD 的中點,AD=13cm,BD=3cm.
(1)圖中共有 條線段;
(2)求 AC 的長;
(3)若點 E 在線段 AD 上,且 BE=2cm,求 AE 的長.
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)要求作圖.
(1)如圖1,平行四邊形ABCD,點E,F分別在邊AD,BC上,且AE=CF,連接EF.請你只用無刻度直尺畫出線段EF的中點O.(保留畫圖痕跡,不必說明理由).
(2)如圖2,平行四邊形ABCD,點E在邊AB上,請你只用無刻度直尺在邊CD上找一點F,使得四邊形AECF為平行四邊形,并說明理由.(注意:無刻度直尺只能過點畫線段或直線或射線).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線: 與拋物線相交于點A(,7).
(1)求m,n的值;
(2)過點A作AB∥x軸交拋物線于點B,設拋物線與x軸交于點C、D(點C在點D的左側),求△BCD的面積;
(3)點E(t,0)為x軸上一個動點,過點E作平行于y軸的直線與直線和拋物線分別交于點P、Q.當點P在點Q上方時,求線段PQ的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內,直線y=x+2分別與x軸、y軸交于點A、C.拋物線y=﹣+bx+c經過點A與點C,且與x軸的另一個交點為點B.點D在該拋物線上,且位于直線AC的上方.
(1)求上述拋物線的表達式;
(2)聯(lián)結BC、BD,且BD交AC于點E,如果△ABE的面積與△ABC的面積之比為4:5,求∠DBA的余切值;
(3)過點D作DF⊥AC,垂足為點F,聯(lián)結CD.若△CFD與△AOC相似,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=7,AC=6,∠A=45°,點D、E分別在邊AB、BC上,將△BDE沿著DE所在直線翻折,點B落在點P處,PD、PE分別交邊AC于點M、N,如果AD=2,PD⊥AB,垂足為點D,那么MN的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩車從A市去往B市,甲比乙出發(fā)了2個小時,甲到達B市后停留一段時間返回,乙到達B市后立即返回.甲車往返的速度都為40千米/時,乙車往返的速度都為20千米/時,下圖是兩車距A市的路程S(千米)與行駛時間t(小時)之間的函數(shù)圖象,請結合圖象回答下列問題:
(1)A、B兩市的距離是 千米,甲到B市后 小時乙到達B市;
(2)求甲車返回時的路程s(千米)與時間t(小時)之間的函數(shù)關系式,并寫出自變量t的取值范圍;
(3)請直接寫出甲車從B市往回返后再經過幾小時兩車相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當?shù)淖冃危梢越鉀Q很多的數(shù)學問題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因為a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點C是線段AB上的一點,以AC、BC為邊向兩邊作正方形,設AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com